Nyquist frequency on irregular samplings

F. Mignard

OCA/ Cassiopée

Statement of the problem

- Aliasing is a well known effect in frequency analysis
 - it is conspicuous in regular sampling
 - its evidence is less obvious with semi-regular sampling
 - depends on underlying quasi-regularity of gaps or observation clustering
 - there is no aliasing at all with random sampling
- Aliasing restricts the frequency range in harmonic analysis
 - with regular sampling : $v_{max} = 1/2\tau$ Nyquist frequency
- From experience: with irregular samplings much higher frequencies recoverable
 - empirical rules applied :
 - inverse of min interval
 - inverse of mean interval
 - no bound
 - key parameter for both the science return and runtime efficiency

Aliasing with regular sampling

Signal: X(t) defined in the time domain

sampling: $X(t_k)$, t_1 , t_2 , ..., t_n

Spectrum : S(v) defined in the frequency domain

Power: P(v) " "

 $S(v) = \Re(T, \exp[2i\pi vt])$ with \Re linear operator and $P(v) = (S\overline{S})^{1/2}$

if $t_{k+1} - t_k = \tau \Longrightarrow \exp(2i\pi vt) = \exp(2i\pi vt_0) \cdot \exp(2i\pi v k\tau)$

 $\exp(2i\pi(v+m/\tau)k\tau) = \exp(2i\pi km).\exp(2i\pi v k\tau) = \exp(2i\pi v k\tau) \quad \forall m \in \mathbb{Z}$

with $\eta = 1/\tau$ one has $\forall \nu$:

$$S(\nu + \eta) = S(\nu)$$
; $P(\nu + \eta) = P(\nu)$

but: $P(v) = P(-v) \Rightarrow P(v) = P(\eta - v)$: symmetry wrt $\eta/2$

Alias pattern

• Any line in $0 < v < \eta/2$ is mirrored infinitely many times at :

$$v_{+} = v + k\eta$$
, $k = \dots, -2, -1, 1, 2, \dots$
 $v_{-} = -v + m\eta$, $m = \dots, -2, -1, 1, 2, \dots$

Example with regular sampling

General case

- arbitrary sampling : $t_1, t_2, ..., t_n$ with $t_{k+1} t_k = \tau_k$
- aliasing occurs if P(v) is periodic

$$\exists \eta / 2\pi v t_k = 2\pi (v + \eta) t_k + \phi \quad \forall k$$

$$\eta \tau_{k} \equiv 0 \pmod{1}, \quad k=1, 2, \dots, n-1$$

System of n-1 equations to be solved for η

No solution in general no aliasing

Particular cases

- Regular sampling : $\tau_k = \tau$ $\eta \tau \equiv 0 \pmod{1}$ $\eta = 1/\tau \pmod{m/\tau}$
- Pseudo-regular sampling : $\tau_k = p_k \tau$, k = 1, 2, ..., n-1
 - selecting the the largest possible τ $(p_1, p_2, \dots, p_{n-1}) = 1$

$$\eta \tau p_k \equiv 0 \pmod{1}, \quad k = 1, 2, \dots, n-1$$

$$\eta = -$$
(see also : Eyer & Bartholdi, 1999)

 τ could be << the smallest interval resulting in η very large

• Irregular sampling: diophantine approximations $q\tau_k/\tau_m \approx p_k \quad \eta \approx q/\tau_m$

Gaia astro sampling

- Smallest interval t = 100 mn $v_N \sim 7.2 \text{ cy/d}$
 - but no aliasing visible
 - very small periods can be recovered

Conclusions

- Better understanding of the aliasing
- Further developments involve higher arithmetics
- Gaia period search puts on safer grounds

Details and proofs in:

F. Mignard, 2005, About the Nyquist Frequency, Gaia_FM_022

Examples: random sampling

$$p_1 : 3 d$$

 $p_2 : 5 d$

$$S(t_k) = 2\cos(2\pi t_k / P_1) + \cos(2\pi t_k / P_2)$$

 $<\tau> = 0.5 \text{ d} \quad \sigma = 0.1$

Exponential waiting time sampling of 1000 data points over 500 days.

Periods and amplitudes found

2.99999 +/- 0.00002 2.017 +/- 0.005

4.99994 +/- 0.0001 0.988 +/- 0.005

Examples: Gaia-like sampling

 p_1 : 3 d p_2 : 5 d $S(t_k) = 2\cos(2\pi t_k / P_1) + \cos(2\pi t_k / P_2)$

 σ = 0.1 220 samples over 1600 days.

Examples: Gaia-like sampling

