FAMOUS

Frequency Analysis Mapping On Unusual Samplings

F. Mignard

OCA/ Cassiopée

Summary

- Statement of the problem
- Objectives and principles of Famous
- Performances
- Application to variable stars
- Conclusions

Times Series

- Times series are ubiquitous in observational science
 - astronomy, geophysics, meteorology, oceanography
 - sociology, demography
 - economy and finance
- They are analysed to find synthetic description
 - trends, periodic pattern, quasi-periodic signatures
- Fourier analysis has been a standard tool for many years
 - well adapted to regularly sampled signal
 - but plagued with aliasing effect

Regular Sampling

Problems with regular samplings

- periodic structure in the frequency space
 - aliasing
 - infinitely many replica of a spectral line
 - assumption needed to lift the degeneracy

Advantages of regular sampling

- no spurious lines outside the true lines
- $\langle \exp^{i2\pi\nu t}, \exp^{i2\pi\nu' t} \rangle \sim 0$ if $\nu \nu' \neq k/\tau$:: orthogonality condition
- with one spectrum one can have all the spectral information

Irregular Sampling

- No definition of what 'irregular' means
 - continuous pattern from fully regular to fully irregular
 - random sampling is much better than 'structured irregular'
- Problems with irregular samplings
 - many ghost lines linked to the true lines
 - $\langle \exp^{i2\pi\nu t}, \exp^{i2\pi\nu' t} \rangle \neq 0$ for many pairs (ν, ν')
 - lack of orthogonality condition
 - with one spectrum one cannot extract the full spectral information
- Advantages of irregular samplings
 - no periodic structure in the frequency space
 - each spectral line appears once over a large frequency range
 - in principle no assumption needed to find the correct line

FAMOUS: Background and overview

FAMOUS makes the decomposition of a time series as :

 $\phi(t) = c_0 + \sum_k c_k \cos(2\pi v_k t) + s_k \sin(2\pi v_k t), \quad k = 1, \dots, n$

- c_k and s_k are constant or time polynomials
- The frequencies v_k are also solved for
- The spectral lines are orthogonal on the sampling (as much as possible)
- FAMOUS never uses a FFT
- It can be used for any kind of time sampling
- It has a built-in system to determine the best sampling in frequency
- It detects uniform sampling and goes into dedicated procedures
- It can search for periodic functions with $v_k = kv_1$
- It estimates the level of significance of the periods and amplitudes
- It generates a detailed output + all the power spectrums and residuals

Application to Gaia on-board time

	period	amplitude	phase		
	d	μs	0		
1	365.26401	1664.74	267.373	sidereal year	n_3
2	177.56628	121.74	268.988	lissajous period	σ
3	398.88244	22.63	212.608	synodic jupiter	n_3-n_5
4	182.62961	13.83	264.895	six months	2n_3
5	4333.41190	4.76	238.922	sideral jupiter	n_5
6	378.09968	4.63	18.412	synodic saturn	n_3-n_6
7	10751.37900	2.28	349.510	sideral saturn	n_6
8	345.55283	1.33	272.311	synodic lissajous	σ-n_3
9	291.95491	1.28	76.969	2*synodic venus	2*(n_2-n_3)
10	583.94321	1.13	82.919	synodic venus	n_2-n_3
11	439.32954	1.01	250.119		n_3-2*n_5
12	199.44473	0.80	157.509	2 synodic jupiter	2*(n_3-n_5)
13	119.48292	0.70	266.316	sun+lissajous	$\sigma + n_3$
14	1454.84510	0.62	246.329		2*n_2-3*n_3
15	369.65100	0.49	192.786	synodic Uranus	n_3-n_7
16	367.47181	0.46	224.343	synodic Neptune	n_3-n_8

Standard model for FAMOUS

When k frequencies have been identified one has the model:

$$\psi(t) = c_0 + \sum_{i=1}^{k} c_i \cos(2\pi v_i^0 t) + s_i \sin(2\pi v_i^0 t)$$

where

$$c_0, c_1, ..., c_k$$
 and $s_0, s_1, ..., s_k$ are:

constants or polynomial of time:

$$C_i = a_i^0 + a_i^1 t + a_i^2 t^2 + \dots + a_i^p t^p$$

$$S_i = b_i^0 + b_i^1 t + b_i^2 t^2 + \dots + b_i^p t^p$$

where p = p(i): degree selected for each frequency

Solution with k frequencies

When k frequencies have been identified one has the model:

$$(a_i^r, b_i^r, v_i)$$
 :: best least - squares fit \Rightarrow min $|S(t) - \psi(t)|^2$

This is a non-linear least-squares very sensitive to the starting values

Solved in two steps:

- SVD with $v_i = v_i^0$ and
- Levenberg-Marquardt minimisation with all the unknowns

Result : best decomposition of S(t) on the model with k frequencies

Orthogonality for the (k+1)th frequency

Least squares solution

 $\mathbf{Y} \quad \mathbf{A}\mathbf{X} :: \text{least squares fit } \hat{\mathbf{X}} \Rightarrow \min |\mathbf{Y} - \mathbf{A}\mathbf{X}|^2$

Characteristic property : $\mathbf{R} = \mathbf{Y} - \mathbf{A}\hat{\mathbf{X}} \perp \mathbf{A}\hat{\mathbf{X}}$

Any new line found in the residual signal in orthogonal to the previous lines

Main steps of FAMOUS

Settings of FAMOUS

- file_in Input filename with the data y(x) as xx, yy on each record
- icolx index of the column with the time data in file_in
- icoly index of the column with the observations in file_in
- file_out output filename
- numfreq search of at most numfreq lines
- flmulti multiperiodic (true) or periodic (false) search in the signal.
- flauto automatic search (true) or preset value (false) of the max and min frequencies
- frbeg preset min frequency in preset mode
- frend preset max frequency in preset mode
- fltime automatic determination (true) or preset value (false) of the time offset
- tzero preset value of the origin of time if fltime = .false. e
- threshold threshold in S/N to reject non significant lines (< threshold)
- flplot flag for the auxiliary files (power spectrum and remaining signal after k lines)
- isprint control of printouts (0 : limited to results, 1 : short report, 2 : detailed report)
- iresid control the output of the residuals
- fldunif flag for the degree of the mixed terms (true : uniform degree for all terms)
- idunif degree if fldunif = .true.
- idegf(k) degree of each line if fldunif = .false. , k=0,numfreq

Two key parameters

- Sampling step in the frequency domain
 - how to determine the optimum value
 - to find every significant line spectral resolution
 - to limit the amount of computation
 - uniform sampling in v phases in arithmetic progression
- Range of exploration in the frequency domain
 - big running penalty in searching in the high frequency range
 - easy rule for regular sampling
 - nothing obvious for irregular sampling
 - practical rules have been applied based on :
 - the average step in time domain
 - the smallest step in time domain

Step in the frequency domain

- FAMOUS needs a built-in system optimum for every sampling
- The power spectrum is a continuous function in v
- The sampling must allow the reconstruction of P(v)
- There is no obvious and optimum choice
- The choice has important implications:
 - small steps increase the running time
 - large steps : not every line can be discovered

Step in the frequency domain

• In FFT with regular sampling : N+1 data points over T $s_v = 1/T$

• In DFT with regular sampling : more freedom on s, , but less efficiency

Sampling in frequencies

- High resolution of well chosen spectral lines
 - $s(t) = cos(2\pi v t)$, $v = v_1, v_2, \dots v_k in v_{min} \dots v_{max}$
- Statistics of the *k* widths at half-maximum
 - k = 1 for uniform time sampling
 - k ~ 15 for irregular sampling
- Several protections against peculiar line shapes
- Then $s_v \sim \langle w \rangle /6$
- Resolution good enough to go through all the lines

Largest solvable frequency

- The trickiest problem met during development
- Related to the generalisation of the Nyquist frequency
- Relatively well founded solution for uniform sampling
 - v_{max} = Nyquist frequency or multiple
- No natural maximum for irregular sampling
 - inverse of the smallest, average, median ... interval?
- Practical solution adopted for FAMOUS :
 - Either :
 - ν_{max} user provided recommended solution
 - Otherwise : search of a representative timestep
 - statistics of the 2-point intervals in the time domain
 - then $\tau \sim 2$ nd decile and $v_{max} = 1/2\tau$

Performances

Simulation

- The simulation generates a periodic or multi-periodic signal
- Sampling can be regular or with some randomness
- $s(t_k) = 2\cos(2\pi/p1^* t_k) + \cos(2\pi/p2^* t_k)$
- Gaussian random noise with $\sigma = 0.1$
 - n = 1000 samples
 - P = 3, 5, ... days
 - T = 500 days
 - $\tau = 0.5$ day (for regular sampling)
 - $-1/\tau = 2 \text{ cy/day}$
 - $N_{v} = 1/2\tau = 1 \text{ cy/day}$

Examples

 $\tau = 0.5 d$

Examples

 $p_1 : 3 d$ $p_2 : 5 d$

 $\tau = 0.5 d$

Examples

p₁: 0.43 d p₂: 0.45 d

 $\tau = 0.5 d$

 $\tau = 0.05 d$

Examples: random sampling

 $p_1 : 3 d$ $p_2 : 5 d$

$$S(t_k) = 2\cos(2\pi t_k / P_1) + \cos(2\pi t_k / P_2)$$

 $<\tau> = 0.5 d \sigma = 0.1$

Uniform random sampling of 1000 data points over 500 days.

Periods and amplitudes found

2.99998 +/- 0.00002 1.995 +/- 0.005

Examples: Gaia-like sampling

$$S(t) = \sum a_i \cos\left(2\pi \frac{t}{P_i}\right)$$

 $\sigma = 0.1$ 220 samples over 1600 days.

i	Р	a
1	3	2
2	5	1.5
3	1	1
4	7	0.5
5	20	0.2

i	Р	a
1	3	2
2	5	1.5
3	1	1
4	7	0.5
5	20	0.2

Examples: Gaia-like sampling

i	Р	a	
1	3	2	
2	5	1.5	
3	1	1	
4	7	0.5	
5	20	0.2	

Results from FAMOUS

Periods		amplitud	des
3	2.99998 +/- 0.00002	2	1.993 +/- 0.02
3	4.99995 +/- 0.00006	1.5	1.523 +/- 0.02
1	0.99999 +/- 0.00002	1.0	0.990 +/- 0.02
7	7.00008 +/- 0.0003	0.5	0.483 +/- 0.02
20	20.0083 +/- 0.008	0.2	0.187 +/- 0.02

2-mode Cepheids

• Hip 2085 = TU Cas

- problem known for many years
- large residuals in Hipparcos data with a single period
- well visible in the folded light-curve

FAMOUS can solve for several unrelated periods

$$p_1 = 2.1395$$
, $p_2 = 1.5186$, $p_3 = 1.1753$ days

$$- a_1 = 0.316$$
, $a_2 = 0.086$, $a_3 = 0.074$ mag

Famous for periodic signals

- FAMOUS is not specifically designed for periodic signal
- However one can search only one frequency
 - in most cases of interest this gives the period
 - but : the largest amplitude of a periodic signal can be an harmonic
 - therefore a submutiple of the period is found
- With two frequencies : $v_2/v_1 = 2$ or 0. 5 tests
- This approach is generalised to locate the fundamental
 - search the first frequency (largest amplitude in the 1st periodogram)
 - search over a narrow bandwidth around $v_1/2$, $v_1/3$, $v_1/4$, $2v_1$, $3v_1$, ...
 - tests to select the fundamental

Eclipsing Binaries I.

Eclipsing Binaries II.

b/a = 0.0 to 1.0

- the period found may be half the true period

Eclipsing binary: period?

• Hip 1387 = AQ Tuc

Global exploitation on Hipparcos data

- Run over the photometric data of the ~ 2500 periodic variables
 - periods larger than 2h searched (0 to 12 cy/day) key parameter
 - totally blind search
 - production of folded light-curves
 - running time on laptop: 450 s ~ 0.18 s/star

Wrong solutions

Wrong solutions?

not found

or factor 2

VSWG, Genève, 6 July 2005

Conclusions and Further developments

- FAMOUS performs very well to analyse periodic time series
- It is not optimum for pulse-like signals with numerous harmonics
- But it is very efficient as starting method
- More effort on the theory is needed :
 - significance and error analysis not complete
 - window function for irregular sampling
 - better theoretically validated maximum frequency
 - relation with sufficient statistics not established.
- FAMOUS is freely available on line, with Fortran source, test files, and the built-in simulator: website of the VSWG or on

ftp.obs-nice.fr/pub/mignard/Famous