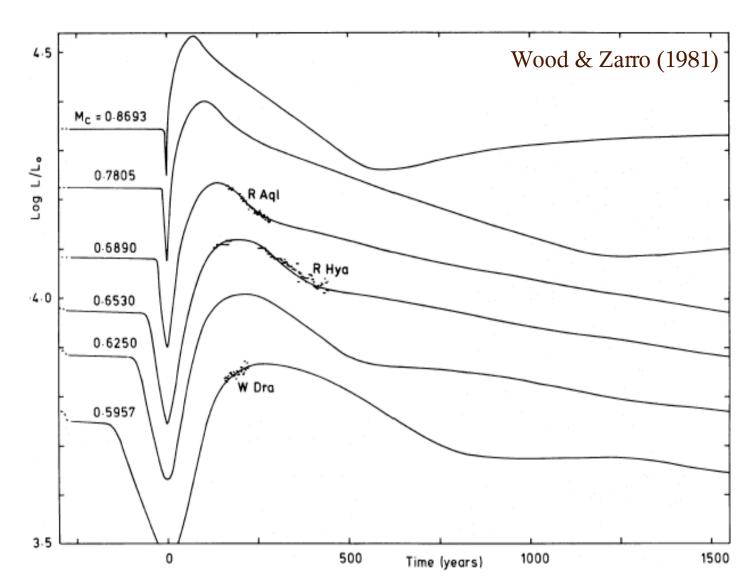

Photometric trends from secular evolution

Nami Mowlavi (ISDC - Geneva Observatory)

Can we observe 'in real time' the secular evolution of some type of stars with GAIA?

- * Late phases of low-mass stars
 - Asymptotic Giant Branch stars
 - Planetary nebulae
- * Perspectives



- * L x 2 over ~300 yr during afterpulse phase.
- * Δt (afterpulse) $\simeq 0.5\% \Delta t$ (interpulse)
 - → could be observed in ~1 out of 200 AGB stars

2/6

The AGB phase - 2

Expected variations possibly confirmed in few stars

BUT: large amplitude variability of Miras (up to 2 mag) on time scales of several hundred days

→ would require several years of averaged flux measurements

Transition from AGB to PN - 1

Thermal time scale

 T_{eff} increases from ~5,000 K to > 80,000 K within few 10,000 yr

= time for the H-burning shell (d M_c /d $t \simeq 10^{-7} \rm \, M_\odot$ /yr) to burn an envelope of M_{env} $\simeq 10^{-3} \rm \, M_\odot$

Dynamical time scale

Superwind leading to the removal of the AGB envelope.

The hot central star then illuminates the ejected material around it (->visible PN)

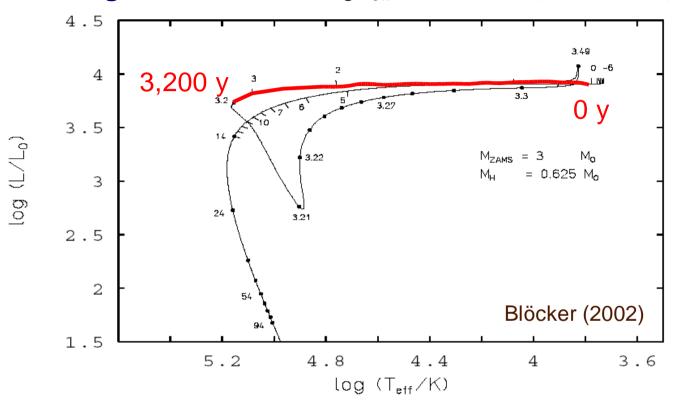
$$v_{exp} \simeq 10 - 20 \text{ km/s}$$

 $\text{size} \simeq 0.1 \text{ pc}$ $t_{dyn} \simeq 10^4 \text{ yr}$

Could there be hidden post-AGB stars?

i.e. post-AGB stars that would have a faster dynamical evolution, thus not leading to a visible PN?

Henize 1357: 1971: 20,000 K


1988: 35,000 – 40,000 K

1994: 55,000 K (Parthasarathy et al. 1995)

Detectable by GAIA?

Transition from AGB to PN - 2

Crossing time scale from $\log T_{eff} \sim 3.9$ to ~ 5.2 (Blöcker 2002):

 $0.55 \,\mathrm{M}_{\odot}$: 100,000 y

 $0.60 \; \mathrm{M}_{\odot}$: 4,000 y

 $0.70 \; M_{\odot}$: 800 y

 $0.84 \; \mathrm{M}_{\odot}$: 350 y

 $0.94 \; \mathrm{M}_{\odot}$: 50 y

 $M_V = M_{bol} - BC$: with BC \simeq -2.58 for log $T_{eff} = 4.40$ (Mendez et al. 1992) -6.36 for log $T_{eff} = 4.95$

For $M_c = 0.6 M_{\odot}$: **0.001** M_v / yr (~3.8 M_v / 4000 yrs)

Reborn AGB stars: still faster blue to red evolution

Perspectives

- * Intrinsic variability?
- * Color evolution
- * Estimate more accurately GAIA detectability of those AGB→PN transition
- * Estimate statistics: expected number of post-AGB / reborn AGB stars ?
- * Explore late stages of more massive stars