The group at Leicester would like to tie the issue of determining instrument stability/trends and variability detection.

The group at Leicester would like to tie the issue of determining instrument stability/trends and variability detection.

The measurement of flux/magnitude as a function of time for an object is:

 $Flux_{measured}(t) = f(Flux_{object}(t), Instrument(t))$

The group at Leicester would like to tie the issue of determining instrument stability/trends and variability detection.

The measurement of flux/magnitude as a function of time for an object is:

 $Flux_{measured}(t) = f(Flux_{object}(t), Instrument(t))$

• If $Flux_{object}(t) = Constant$, then we are able to measure the instrumental variations.

The group at Leicester would like to tie the issue of determining instrument stability/trends and variability detection.

The measurement of flux/magnitude as a function of time for an object is:

$$Flux_{measured}(t) = f(Flux_{object}(t), Instrument(t))$$

• If $Flux_{object}(t) = Constant$, then we are able to measure the instrumental variations.

• If Instrument(t) is known, then we can determine $Flux_{object}(t)$

A collection of objects which have been measured "simultaneously" over a (long) period of time allows treating the problem from a statistical point of view.

A collection of objects which have been measured "simultaneously" over a (long) period of time allows treating the problem from a statistical point of view.

One would expect that most measured objects will not exhibit measurable photometric variability allowing us to determine a mean constant behaviour, therefore, deriving an instrumental behaviour...

A collection of objects which have been measured "simultaneously" over a (long) period of time allows treating the problem from a statistical point of view.

One would expect that most measured objects will not exhibit measurable photometric variability allowing us to determine a mean constant behaviour, therefore, deriving an instrumental behaviour...

Those objects which deviate from the mean behaviour can be considered photometrically variable. GAIA Variability Working Group Geneva, July 6, 2005

Defining the mean behaviour

Assume a set of times $(t_1...t_N)$ when objects $O_1..O_m$ have been measured.

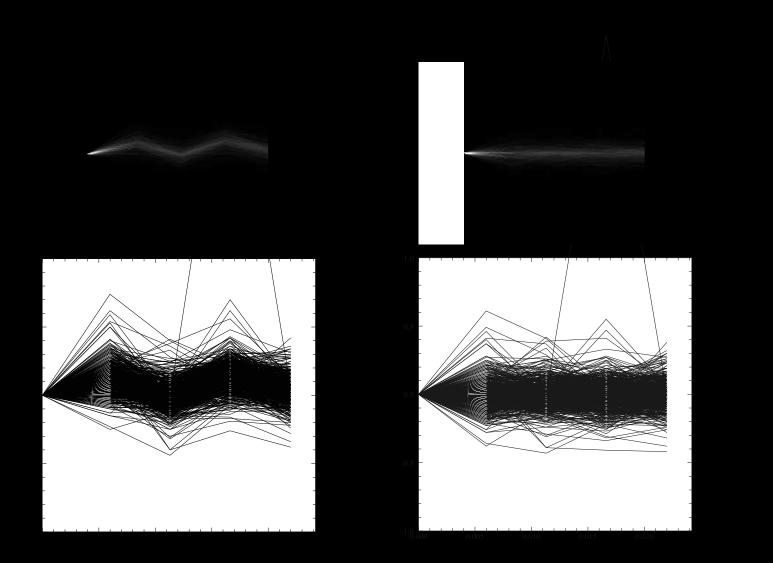
 $m_{i,k}$ represents the magnitude for object O_i measured at time t_k

Defining the mean behaviour

Assume a set of times $(t_1...t_N)$ when objects $O_1..O_m$ have been measured.

 $m_{i,k}$ represents the magnitude for object O_i measured at time t_k We then compute a differential magnitude $dm_{i,k}$ for each object, where

$$dm_{i,k} = m_{i,k} - m_{i,1}, (k \in [1, N])$$


This method brings all magnitudes to a common ground, ie, referred to their initial measurement: $dm_{i,1} \equiv 0$

GAIA Variability Working Group

Geneva, July 6, 2005

Data from ground base, non-calibrated mosaic observations

GAIA Variability Working Group

Geneva, July 6, 2005

• Identification of measurements corresponding to an object in time (short or long scale) for as many objects as possible.

- Identification of measurements corresponding to an object in time (short or long scale) for as many objects as possible.
- Grouping objects which have been observed "simultaneously".

- Identification of measurements corresponding to an object in time (short or long scale) for as many objects as possible.
- Grouping objects which have been observed "simultaneously".
- Determine the "mean behaviour" (and identifying non-variable objects)

- Identification of measurements corresponding to an object in time (short or long scale) for as many objects as possible.
- Grouping objects which have been observed "simultaneously".
- Determine the "mean behaviour" (and identifying non-variable objects)
- Identify and classify the light curve of objects which can't be considered non-variable.