The Cosmic Lithium Abundances and Physics beyond the Standard Model

Karsten JEDAMZIK†

† LPTA, Montpellier
The Big Bang Nucleosynthesis standard model

- General relativity
- Equilibrium initial conditions with baryon-to-photon ratio 6.2×10^{-10}
- Vanishing lepton number chemical potentials
- Radiation energy density given only by photons, electrons/positrons, neutrinos
- No decaying or annihilating relic particles
- No inhomogeneities in baryons
- No small antimatter domains
- No impurities like cosmic strings, primordial black holes

Karsten Jedamzik, IAU268, Light Elements in the Universe, November 9th ’09 – p. 2
SBBN: A one parameter model

Cyburt et al. 08

overconstrained \rightarrow consistency checks possible
The 7Li Spite plateau

- (almost) no variation with metallicity and stellar temperature
- no measurable star-to-star scatter
- Interpretation - the Primordial 7Li Abundance

Spite & Spite 82, Bonifacio & Molaro 97, Ryan et al 99, Melendez Ramirez 04, Charbonnel & Primas 05, Asplund et al 06, ...

7Li discrepancy $4.2 - 5.3\sigma$
Nuclear reactions/stellar atmospheres?

- Stellar temperature $\Delta T \sim 900$ K underestimated seems impossible

- Narrow nuclear resonance in

$$ ^7\text{Be} + ^2\text{H} \rightarrow ^9\text{B}^{*}_{5/2} \rightarrow ^4\text{He} + p $$

Cyburt & Pospelov 09, Angulo et al. 05

seems unlikely but not ruled out \rightarrow need further measurement
Depletion of Lithium in PopII stars?

^7Li is observed in the atmospheres of PopII stars. It may be destroyed via $^7\text{Li} + p \rightarrow ^4\text{He} + ^4\text{He}$ in the interior of the star. Atmospheric material transported into the star and ^7Li-depleted gas returned to the atmosphere.

Spite plateau not primordial?

Depletion of ^7Li by factor 2 – 4 in halo stars is not understood and may currently only be explained with fine-tuned stellar conditions. Dispersion?
7Li depletion by atomic diffusion in PopII stars?

Korn et al., Richards et al.

atomic diffusion

turbulent mixing

\[
D_T = 400 D_{AHe}^{gs} \left(\frac{\rho}{\rho(T_0)} \right)^{-3} \text{ at } \log(T_0) = 6.0 \pm 0.1 \rightarrow \pm 25\%
\]

\[\rightarrow \text{ factor 1.8 } ^7\text{Li depletion} \]

with depletion factor 1.8

SBBN + WMAP predicted Li/H

(2−σ -error bars)

observed Li/H by different groups

but stellar models ad hoc and tuned
$^6\text{Li}/H$ observations

A second Lithium plateau?

$^6\text{Li}/H \approx 6 \times 10^{-12}$ compare to standard BBN $^6\text{Li}/H \sim 10^{-14}$

^6Li and ^7Li absorption features blend together

^6Li from asymmetry of lines

asymmetry of lines from convective Doppler shifts?

non-LTE hydrodynamic simulations of two groups reach opposite conclusions
\textbf{\(^6\text{Li} \) production by early cosmic rays: Energetics?}

\(^6\text{Li} \) originates in galactic cosmic ray nucleosynthesis (along with \(^{9}\text{Be} \), and B)

- via \(p + \alpha + \text{CNO} \rightarrow \text{LiBeB} \)
- and some \(\alpha + \alpha \rightarrow \text{Li} \)

need \textbf{100 eV/nucleon} to synthesize \(^6\text{Li}/H \sim 5 \times 10^{-12} \)

standard cosmic rays may provide 5 eV/nucleon (up to \([Z] \sim -2.7\))

only very efficient accretion on central black hole, or large fraction of baryons in supermassive \(\sim 100 M_\odot \) stars may provide the required cosmic rays

Suzuki & Inoue 00 Rollinde \textit{et al.} 05, Prantzos \textit{et al.} 05 Nath \textit{et al.} 05
if ^6Li exists in these stars of the abundance as claimed \rightarrow

something important about the Universe has been learned
BBN with decaying and annihilating particles

- Injection of energetic nucleons and mesons
 - Charge exchange reactions
 \[\pi^- + p \rightarrow \pi^0 + n \]
 - Elastic- and inelastic scatterings
 \[p + p \rightarrow p(n) + (p)n + \pi's \]
 - Spallation reactions
 \[p(n) + ^4\text{He} \rightarrow ^3\text{H}, ^3\text{He}, ^2\text{H} + \ldots \]
 - Coulomb stopping of charged nuclei
 \[^3\text{H} + e^\pm \rightarrow ^3\text{H}' + e^\pm \]

- Injection of energetic photons and electrons/positrons
 - Pair production on CMBR
 \[\gamma + \gamma_{\text{CMBR}} \rightarrow e^- + e^+ \]
 - Inverse Compton scattering
 \[e^\pm + \gamma_{\text{CMBR}} \rightarrow e^\pm + \gamma \]
 - Bethe-Heitler scattering
 \[\gamma + p \rightarrow p + e^- + e^+ \]
 - Photodisintegration
 \[\gamma + ^4\text{He} \rightarrow ^3\text{H} + p \]

including \(^3\text{He}/^\text{D} < 1.72; ^6\text{Li}/^7\text{Li} < 0.1875\)
Destruction of ^7Li during BBN by injection of neutrons

K.J. 04

^7Li destruction: $^7\text{Be} + n \rightarrow ^7\text{Li} + p$; $^7\text{Li} + p \rightarrow ^4\text{He} + ^4\text{He}$

at $T \approx 30$ keV

need only 10^{-5} extra neutrons per baryon

some extra ^2H will be also synthesized

Karsten Jedamzik, IAU268, Light Elements in the Universe, November 9th '09 – p. 12
production of ^6Li in SBBN by $\text{D} + ^4\text{He} \rightarrow ^6\text{Li} + \gamma$ which is quadrupole suppressed $\rightarrow ^6\text{Li}/\text{H} \sim 10^{-14}$
Production of ^6Li in cascade nucleosynthesis

^6Li is very easily produced by small "perturbations" of the standard model Dimopoulos et al. 88, K.J. 00

Electromagnetic:

\[\gamma + ^4\text{He} \rightarrow ^3\text{H} + p \]

\[^3\text{H} + ^4\text{He} \rightarrow ^6\text{Li} + n \]

at $T \lesssim 0.1 \text{ keV}$

Hadronic:

\[n + ^4\text{He} \rightarrow ^3\text{H} + p + n \]

\[^3\text{H} + ^4\text{He} \rightarrow ^6\text{Li} + n \]

at $T \lesssim 10 \text{ keV}$
Production of ^6Li in catalytic nucleosynthesis

negatively charged weak mass scale particles X^- during BBN → formation of bound states with nuclei

$^7\text{Be} + X^- \rightarrow (^7\text{Be}X^-) + \gamma$ at ≈ 30 keV

$^4\text{He} + X^- \rightarrow (^4\text{He}X^-) + \gamma$, at ≈ 10 keV

X^- acts as catalysator for reactions

$(^4\text{He}X^-) + D \rightarrow ^6\text{Li} + X^-$

$(^4\text{He}X^-) + ^4\text{He} \rightarrow (^8\text{Be}X^-) + \gamma$;

$(^8\text{Be}X^-) + n \rightarrow ^9\text{Be} + X^-$

important when $B_h \lesssim 10^{-2}$ as with supersymmetric stau!
Catalysis and $^6\text{Li, }^7\text{Li, and }^7\text{Be}$

Catalysis:

- main production mechanism for ^6Li if $B_h \lesssim 10^{-2}$
- may only solve the ^7Li problem, if $B_h \lesssim 10^{-5}$ rather small and $\Omega_X \gtrsim 10$ rather large
- not clear if may lead to some ^9Be production
The lithium friendly parameter space

K.J. 04

D/H
3e-05

7Li/H
1e-10

6Li/7Li 1
0.1
1e-02

τ (sec)

Bailly, K.J., Moulhaka 08

ΩXh²Bh

Yp>0.258

D/H>4x10⁻⁵
Signatures at the LHC!

A metastable particle X with life time between $100 - 1000$ sec, if not too massive, could be potentially produced at the LHC (since having at least some hadronic interactions), and, if electromagnetically or strongly interacting stopped in the detector \rightarrow smoking gun for non-standard BBN \rightarrow possible connection to the dark matter.

Examples:
- supersymmetric gravitino
- supersymmetric stau Next-to-LSP with gravitino LSP
- gluino in split supersymmetry
Example: Gravitino dark matter in the CMSSM

K.J., Choi, Roszkowski, Ruiz de Austri 06

Karsten Jedamzik, IAU268, Light Elements in the Universe, November 9th, 09 – p. 19
Production of cosmic ^6Li by neutralino annihilation

K.J. 04ab, Pospelov & K.J. 09

uu-quark, $^6\text{Li}/^7\text{Li} = 0.01-0.09,0.024-0.68$; $\text{D}/\text{H}=3.5,4.4,5.3\times10^{-5}$; $^7\text{Li}/\text{H} = 1.5,2.3,4\times10^{-10}$
Signatures at the LHC!

If the LHC discovers a light stable neutralino of mass
\(m \approx 20 - 90 \text{ GeV} \) and of hadronic annihilation cross section
\(3 \times 10^{-26} \text{ cm}^3 \text{s}^{-1} \) as required to explain origin of the dark
matter by annihilation freeze-out \(\rightarrow \) explanation of all the \(^6\text{Li} \)
as claimed to exist in HD84937.
Varying fundamental constants and ^7Li

Dmitriev, Flambaum, & Webb 04, Dent, Stern, & Wetterich 07, Berengut, Flambaum, & Dmitriev 09

^7Li depends strongly on B_d and $B_{^7\text{Be}}$

$\Delta B_d/B_d \approx -0.019 \pm 0.005 \rightarrow$ reduce ^7Li (and ^4He)

$\Delta m_q/m_q \approx 0.013 \pm 0.002 \rightarrow$ reduce ^7Li
Conclusions

- the by standard BBN at η_{WMAP} predicted D (and ^4He) are in good agreement with those observed
- in contrast, there is a factor 3-4 discrepancy between SBBN predicted and observationally inferred ^7Li
- this discrepancy could possibly be removed if ^7Li is destroyed in Pop II stars, though how this is done exactly is not understood
- alternatively BBN could have been non-standard, e.g. including the decay of a relic particle \rightarrow potentially testable at the LHC
- accelerators ultimately may teach us that the apparent anomalies in the cosmic ^7Li (and ^6Li) abundance are ultimately connected to the dark matter
D/H from Quasar Absorption Systems

Tytler, Fan, & Burles 96

significant dispersion → underestimated systematic errors?

D/H = 2.98$^{+0.29}_{-0.23}$ × 10$^{-5}$