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1 Cosmological structure formation: Into the future

In this exercise, we construct initial conditions for a typical simulation of cosmic structure forma-
tion in the ΛCDM cosmology, including only dark matter. For fun, we will run the simulation not
only until z = 0, but also a bit into the future to see what happens when the Universe becomes
dark energy dominated.

We go through the following steps:

• Construction of initial conditions

• Running the simulation on a parallel computer with the GADGET2 code

• Visualizing the cosmic large-scale structure at different times

• Analyzing the cosmic energy budget

• Finding halos with a friends-of-friends (FOF) group finder

• Determining structural properties (density profile and velocity anisotropy) of the biggest
cluster that has formed

• Measuring σ8 in different ways

1.1 Generation of initial conditions

Download a version of the IC-code N-GenIC that I have written at some point (from the web-site
of the school). It is controlled with a simple ASCII parameterfile, which you should modify
accordingly for the task at hand. An example parameterfile is included in the code distribution.

We would like to run a cosmological simulation with cosmological parameters Ωdm = 0.3,
ΩΛ = 0.7, h = 0.7, σ8 = 0.9. As numerical parameters, we pick a boxsize L = 150000h−1kpc
and particle number Np = 1283 (or Np = 643 if you are in a hurry and the computers are
busy). To be consistent with your pears, let’s pick all the same random number seed – let’s say
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123456, such that the same realization is created. Pick a starting redshift of zinit = 63. Select
Efstathiou’s fitting formula for the initial power spectrum, and feed the code a Cartesian grid for
the unperturbed particle distribution.

The IC code is MPI-parallel, and is run with the parameterfile as argument. (However, as the
problem size is still small, you may also run it in serial.)

1.2 Run the problem with Gadget2

The next step is to run the simulation with the Gadget2 code. To this end you need to configure
its parameterfile and makefile correctly. Most of this should be straightforward, but here are a
few suggestions:

Pick the TreePM gravity solver, with a suggested mesh-size of PMGRID = 2563 for the 1283

particle set-up. We would like to run the simulation out to a scale factor of a = 8. (Aside:
Calculate how many billion years this is into the future). I’d suggest to create output dumps at
scale factors 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0.

Since we would like to look at the evolution of the energies among other things, ask the code to
create measurements of the potential energy (this costs a bit additional computational expense),
by setting the switch COMPUTE POTENTIAL ENERGY. Use something like TimeBetStatis-
tics=0.125 to set the frequency of these outputs.

Pick a gravitational softening length of order ∼ 1/35 the mean particle spacing, fixed in
comoving coordinates. With 8 compute cores, the simulation should take of order 2 hours,
so this is not completely negligible any more. Exchange data with fellow students or reduce
the particle number to Np = 643 if you are impatient or computer resources are momentarily
congested.

1.3 Let’s take a look at it

In case something has gone wrong in a simulation, a simple simulation image will often be quite
revealing, as the human eye is very good in spotting suspicious artefacts. While images are in no
way conclusive, it’s hence always a good idea to make some!

So construct a few slices through the simulation box. As a start, make simple dot plots where
you show all the particles in a slab through the simulation box, projected down to a plane. For
definiteness, project along the z-direction and show the slab [0, L]× [0, L]× [0, L/5], where L is
the boxsize. You may use the pyhton tools made available on the school’s website for this.

How would you characterize the evolution of the cosmic structures at late times?

1.4 Cosmic energies

Among other log-files, the code should have produced an ASCII file, energy.txt. It contains global
measurements of kinetic energy and potential energy that we want to look at next. The third
column gives the total potential energy, and the forth column contains the total kinetic energy
in peculiar motion – these are the two energy terms in the cosmological Hamiltonian. Make a
plot of the kinetic energy and the energy in the peculiar gravitational potential as a function of
scale-factor (log scales). Disregard the highest redshift output, as the zero point of the potential
energy will not go accurately to zero for z → ∞ due to discreteness effects, unlike expected for
the continuum. What’s your interpretation of the results? Does this match your expectations?

Explain why both the kinetic energy and the potential energy scale ∝ a at high redshift.
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Also make a plot of the total energy as a function of scale factor. Try to use the Layzer-Irvine
equation for roughly checking energy conservation in the simulation. To this end, predict the
expected total energy change relative to the initial time by numerically integrating the cosmic
energy equation based on the measured values for kinetic and potential energy. Overplot this
expected energy as symbols for each of the times in your energy.txt file.

1.5 Group finding

One of the most basic analysis usually carried out in cosmic structure formation simulations is
group finding. The simplest and most widely used algorithm for this is FOF, which we apply to
our simulation.

You can download (a rather old serial) version of a FOF group finder I once wrote from
the school’s web-site, or if you prefer, you can use one of the group finders that have been made
publicly available (for example from the U. of Washington’s N-body shop, or AHF from Alexander
Knebe).

Let’s use a standard linking length of 0.2 times the mean particle spacing. If you use the code
I provide, note that its parameters are hard-coded in the beginning of the file main.c. Check
that these settings are ok, and then apply the group finder to all the outputs you got. (Three
parameters are expected, the output directory, the base name of the snapshot files, and the
number of the dump that you want to operate on.)

Once the group finder has run, check its results by plotting the cumulative mass function at the
different output times. (Optional: Overlay predictions from the Press-Schechter mass function
formalism.) Make a dot-plot of the largest halo at the different output times.

1.6 Structural properties of the largest halo

Let’s now study the internal structure of the most massive halo, and check how it evolves at late
times. Write code to measure the spherically averaged density profile. This requires identification
of the correct center of the halo. Don’t use the center-of-mass of the particles that make up the
FOF group (why?). Rather, iteratively find the densest point of the halo by shrinking a sphere
that you re-center in each iteration onto its current center. (Alternatively, you could use the
minimum of the potential.) Use logarithmic bins in radius (say ∼ 20), ranging from the softening
length to about 3 times the virial radius. Include all particles in the simulation when you make
the binning, not just those linked into the halo by the FOF method.

Overplot the density profiles in physical coordinates at the different output times, and in-
terprete what you see. Also measure the radial (σ2

r ) and tangential velocity dispersion, σ2
t =

(σ2
φ +σ2

θ)/2, in each shell (in terms of physical velocities), and the velocity anisotropy parameter

β(r) = 1− σ2
t /σ

2
r for the halo. Interprete the results for the time evolution.

1.7 Checking the normalization of the simulation

Finally, we would like to check how well the simulation has reproduced the desired normalization
in terms of the linearly extrapolated rms fluctuations σ8 in spheres of radius 8h−1Mpc.

Implement two different methods for measuring σ8 from the z = 0 output of the simulation:

• Write code that bins the particles onto a grid, and then convolves the density fluctuation
field with a top-hat kernel of radius 8h−1Mpc. Do this by setting up the kernel in real-
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space. This is simple if you observe that parts of the kernel will sit in all the 8 corners of the
real-space field, for the usual FFT storage convention. Also, make sure that the discretized
kernel you construct is normalized to unity. Then carry out the convolution with discrete
FFT transforms. Finally measure the rms of the density field to determine σ8.

• Measure for a large number of random coordinates the enclosed mass density contrast
around these random points. Use this to estimate σ8, even though this is obviously not a
computationally efficient approach.

Give reasons why the result for σ8 you obtain is not exactly equal to the input value used for
constructing the initial conditions.
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