PART IV

Star Formation



1. Kennicutt-Schmidt and All,

All, All

Maarten Schmidt

Robert Kennlcutt |
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WARNING!

Anyone calling KS
relation a “law” will be

immediately forcefully
removed from the
lecture room.




History: Why KS?
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F. Walter &
The HI Nearby
Galaxy Survey

SFR distributions from 24 um SINGS + GALEX
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Why THINGS Matter

The THINGS survey unambiguously proved what everyone
knew in their hearts: stars form from molecular gas.
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The one and only plot of the classical KSR in this course!

log Zgrg [Me yr™' kpc™]
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Depletion Time
* |tis convenient to think about star formation on large scales
In terms of the gas depletion time 1sr :
d>, - 1.36%y,

dt SF TSF

2)SFR =

Quiz: This whole thinking is wrong. Why?

Density is only defined on a particular spatial scale.
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How We Should Think
About Star Formation

Take some spatial scale L.

Average all densities on this scale - only them are
meaningfully defined.

<:0mg>L
TSF

With TSF — TSF(L, <ng>La )

(Ps)L =



103 pc

102 pc

10 pc

1pc

Let’s Think in 2D!

7sr = TSF (L, (Pmg) Ly ---)

10 cm?3

102 cm?®

103 cm?®

104cm3 P
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Large Scales, z~0

THINGS galaxies: L > 500kpc, 7sp ~ 2Gyr.
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A Side Note

* For alog-normal distribution with a median 1 and

dispersion o
Lo (_ (In(x) — In(x)) ) da

p(x)dr =

o\ 2m 202 T

T = /xp(x)dx = pexp(c?/2)

 Hence, for o ~ 0.25dex

TSF ~ O-87-SF,med
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High Redshift, z~2-3

At high redshifts the depletion time is also constant,
although may be a factor ~2-3 shorter.
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Variable Depletion Time or X.,?
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Variable Depletion Time or X.,?

* High-redshift galaxies have higher SFR per unit CO
luminosity.

* Whether this reflects a higher X ¢ factor or a shorter
Tsp IS a big open question.



Let’s Think in 2D!
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Let’s Think in 2D!

103 pc

102 pc

10 pc

tp  (Lada, Lombardi, Alves 201- 20 Myr
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Constant Efficiency per

Free-Fall Time

The most common ansatz used in modern simulations is
the constant efficiency per free-fall time:

T ({Pm L) — 3
TSP (L; (Pme) L, ---) = (<€SFg> B 6SI%\/SQG(,O )L
mg

or, in a more familiar form:

3/2
<ng>L — €sF <pmg>[/
TH V/3m/(32G)
This is just an ansatz: molecular clouds are turbulent and

the free-fall time is meaningless on scales above molecular
cores (~0.1pc).

<,0*>L — €SF



Constant Efficiency per

Free-Fall Time

Krumholz & Tan (2007) did not invent the “constant efficiency
per free-fall” ansatz, but they advocated it strongly.
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Let’s Think in 2D!

102 pc
GMC (K&T 2007) 500 Myr
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Let’s Think in 2D!

102 pc
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10 pc
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Let’s Think in 2D!

103 pc

102 pc
500 Myr

10 pc 100 Myr
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Let’s Think in 2D!

L
103 pc
102 pc
500 Myr
10 pc 100 Myr
1 oc K&T 2007 track 20 Myr

102 cm3 10% cm3 104ecm3 P
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102 pc
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Is Life Simple?

25% 500 Myr

%

100 Myr

A fuzzy

threshold 20 Myr

102 cm3 10% cm3 104ecm3 P



Summary

<;0*>L — <ng>L’ TSF — TSF(La <,0mg>L7 )
TSF

Density is only defined on some scale, p = M /V .

On large scale (< 100pc) the depletion time is
independent of density, but may depend on other factors
(redshift, “normal” vs “merger” mode, etc).

The “constant efficiency per free-fall” ansatz (p,. pf’n/g?) IS

just an ansatz, the free-fall time is not a relevant physical
quantity in turbulent molecular clouds.

Existing observational constraints are equally consistent
with 7sp = 75r (L) ansatz.



2. Excursion Set Formalism
in Star Formation

" M.=10,M=3, =0 +
* 1=0.21620.001

M6 M, oo, 7,204
S 5=0273:6.001

1094 P/Pg

 Density distribution in simulations of supersonic turbulence
Is known to be closely approximated by log-normal.



ESF as a Theory of SF

 Started by Padoan & Norlund (2002, 2007), picked up by
Hennebelle & Chabrier (2008) and developed further by
Phil Hopkins in a recent series of papers.

« Builds on the analogy with cosmology: Gaussian linear
density field of LSS vs Gaussian In(p/pg) field in
molecular clouds.

 Just from the general principles, it is obvious to every
cosmologist that such an approach cannot work...



Refresher:
Excursion Set Formalism
Also known as Press-Schechter formalism.

Consider a box B (L) of size L with some field (%) in it;
the field is random if a value of 4 in the same relative
location in some other box B2 (L) cannot be determined
from the corresponding value of 6 in Bx.

Take Fourier transform of o ().
5o = [ dPxs(E)e*T

The random field 6 () is Gaussian with the power
spectrum P (k) if.

(05 0% ) = P(k1)6% (k1 — ka)



Refresher:
Excursion Set Formalism

Reversing the Fourier transform:

) = / Pk/Pk)Age

Az A2 ) = 6% (k1 — ko)

Sometimes, A are (incorrectly) called “phases’.



Refresher:
Excursion Set Formalism

7) = / P ln/P(k) e (A)

» Forsome P(k)integral in (A) diverges for large % ; then it
is treated as a limit of the smoothed field

6(Z) = lim §(Z; R) = /d%/ k)XW (kR)e

R—0

« where W(kR) is alow-pass filter (W (0) =1,
W(oo) = 0).



Refresher:
Excursion Set Formalism

Excursion Set formalism considers (x; R) as a function of
R and compares it with some “barrier” function b(R).

Obviously, 6(Z, R = oc0) = 0.

As R decreases, d(x; R) starts deviating from zero. For
some value of I it may cross the barrier for the first time.

The fraction of all 4 (; R) that cross the barrier at R is
called the *first crossing distribution”.



Refresher:

Excursion Set Formalism

Smooth filter

Sharp filter




Refresher:
Excursion Set Formalism

* For example, in the Press-Schechter formalism the barrier
is constant, b = dr,(t7) = 1.69.

 Then the first crossing distribution becomes (72 x) the mass
function of dark matter halos with M}, = 47p,, R*/3.

« Excursion Set formalism may be used for many other
purposes (ask Sasha Kaurov about using it for modeling
reionization).



ESF as a Theory of SF

* In modeling SF Excursion Set formalism can be used for
several goals:

= First crossing distribution gives the mass function of
largest bound objects — molecular clouds.

= Last crossing distribution® gives the mass function of
smallest bound objects — molecular cores/stars.

= |tis useful for other purposes too: distribution of holes in
the ISM, clustering of stars, efc.

« But wait, what should the barrier be?

* Guessing what it is is left as a home exercise.



Collapse Barrier

Quiz;
A. | do know what the collapse barrier is.
B. | do not know what the barrier could be.

X[k|

2 2
— k2 — 27
RO AT

(02 (k) + )R

The collapse barrier is simply the condition for gravitational
instability for a disk of finite thickness (recall, the Jeans
condition is hidden inside this one).



Log[ dN/dlogM 1 [Mgae/Magnel

ESF as a Theory of SF

Excursion Set formalism makes
predictions that are computable
“analytically” and match a large
variety of observations unexpectedly

well.

The rest is for Ralf to explain...
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