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Calculating
gravitational forces



N2 complexity

½

Direct summation calculates the gravitational field exactly
 

FORCE ACCURACY IN COLLISIONLESS SIMULATIONS

Are approximate force calculations sufficient?

Direct summation approch:

Yes, provided the force errors are random and small enough.

Since the N-body force field is noisy anyway, small random 
errors will only insignificantly reduce the relaxation time.

Systematic errors in the force, or error correlations are 
however very problematic.



The particle mesh (PM) 
force calculation



Poisson's equation can be solved in real-space by a 
convolution of the density field with a Green's function.

The particle-mesh method

In Fourier-space, the convolution becomes a simple multiplication!

Example for
vacuum boundaries:

Solve the potential in these steps:

(1)  FFT forward of the density field
(2)  Multiplication with the Green's function
(3)  FFT backwards to obtain potential

The four steps of the PM algorithm
(a)  Density assignment
(b)  Computation of the potential
(c)  Determination of the force field
(d)  Assignment of forces to particles



Density assignment
set of discrete 
mesh centres

h

Give particles a “shape” S(x). Then to each mesh cell, we assign the fraction of mass that falls 
into this cell. The overlap for a cell is given by:

The assignment function is hence the convolution:

where

The density on the mesh is then a sum over the contributions of each particle as given by the 
assignment function:

Density assignment



Name Shape function S(x) # of cells 
involved

Properties of force

NGP
Nearest grid point

CIC
Clouds in cells

TSC
Triangular shaped 
clouds

piecewise constant 
in cells

piecewise linear, 
continuous

continuous first 
derivative

Note: For interpolation of the grid to obtain the forces, the same assignment function needs to be 
used to ensure momentum conservation. (In the CIC case, this is identical to tri-linear interpolation.)

Commenly used particle shape functions and 
assignment schemes



Finite differencing of the potential to get the force field

Approximate the force field                               by finite differencing

2nd order accurate scheme:

4th order accurate scheme:

Interpolating the mesh-forces to the particle locations

The interpolation kernel needs to be the same one used for mass-assignment to 
ensure force anti-symmetry.

Finite differencing of the potential to get the force field



Advantages and disadvantages of the PM-scheme

Pros: SPEED and simplicity

Cons: ● Spatial force resolution 
limited to mesh size.

● Force errors somewhat 
anisotropic on the scale 
of the cell size

serious problem:

cosmological simulations cluster 
strongly and have a very large 
dynamic range

cannot make the PM-mesh fine 
enough and resolve internal 
structure of halos as well as large 
cosmological scales

we need a method to increase the dynamic range available 
in the force calculation



Particle-Particle PM schemes (P3M)

Idea: Supplement the PM force with a direct summation short-range force at the 
scale of the mesh cells. The particles in cells are linked together by a chaining list.

Offers much higher dynamic range, but becomes slow when clustering sets in.

In AP3M, mesh-refinements are placed on clustered regions

Can avoid clustering slow-down, 
but has higher complexity and 
ambiguities in mesh placement

Codes that use AP3M: HYDRA         (Couchman)



Iterative Poisson solvers can determine the potential 
directly on a (hierarchical) grid

Idea: Start with a trial potential and then iteratively relax the solution by updating 
with a finite difference approximation to the Laplacian.

This updating eliminates errors on the scale of a few grid cells rapidly, but 
longer-range fluctuations die out much more slowly.

In multigrid methods, a hierarchy of meshes is used to speed up convergence, 
resulting in a fast method that allows for locally varying resolution.

Examples for codes that use a real-space 
Poisson solver:

MLAPM   (Knebe )

ART         (Kravtsov)

On adaptive meshes, sometimes a combination of Fourier techniques and 
real-space solvers is used.

RAMSES (Teyssier)



TREE algorithms



Idea: Group distant particles together, 
and use their multipole expansion.

Only ~ log(N) force terms per particle.

Tree algorithms approximate the force on a point with a 
multipole expansion
 

HIERARCHICAL TREE ALGORITHMS

 



Tree algorithms
Oct-tree in two dimensions

level 0

level 1

level 2

level 3

Idea: Use hierarchical multipole expansion 
to account for distant particle groups

r

s

center-of-mass

origin

and obtain:

the dipole term vanishes 
when summed over all 
particles in the group

We expand:

for 



The multipole moments are computed for each 
node of the tree

Monpole moment: Mass and center-of-mass

Quadrupole tensor:

Resulting potential/force approximation:

For a single force evaluation, not N single-particle forces need to be computed, 
but only of order log(N) multipoles, depending on the opening angle.

● The tree algorithm has no intrinsic restrictions for its dynamic range

● force accuracy can be conveniently adjusted to desired level

● the speed does depend only very weakly on clustering state

● geometrically flexible, allowing arbitrary geometries



The fast multipole method (FFM) generalizes the tree 
algorithm and expands the field symmetrically for each pair 
of interacting cells

Two interacting cells:

● Very fast
● Manifest momentum conservation

Dehnen (2002)

● Doesn't work well with individual timesteps
● Difficult to parallelize for distributed memory machines

But:



TreePM force
calculation algorithm



Particularly at high redshift, it is expensive to obtain accurate forces  
with the tree-algorithm
THE TREE-PM FORCE SPLIT

Idea: Split the potential (of a single particle) in Fourier space into a long-range and a short-range 
part, and compute them separately with PM and TREE algorithms, respectively.

Periodic peculiar 
potential

Poisson equation
in Fourier space:

Solve with PM-method
● CIC mass assignment
● FFT
● multiply with kernel
● FFT backwards
● Compute force with 4-point 

finite difference operator
● Interpolate forces to particle 

positions

Solve in real space with TREE

FFT to real space



In the TreePM algorithm, the tree has to be walked only locally
PERFORMANCE GAIN DUE TO LOCAL TREE WALK

~ 5 rs

Using zero-padding and a different 
Greens-Function, the long-range force 
can also be computed for vaccuum 
boundaries using the FFT. 
(Implemented in Gadget-2)

● Accurate and fast long-range force
● No force anisotropy
● Speed is largely insensitive to clustering (as for 

tree algorithm)
● No Ewald correction necessary for periodic 

boundary conditions

Advantages of TreePM include:



Brief digression back to  
time integration



The force-split can be used to construct a symplectic integrator where 
long- and short-range forces are treated independently
TIME INTEGRATION FOR LONG AND SHORT-RANGE FORCES

Separate the potential into a long-range and a short-range part:

The short-range force can then be evolved in a symplectic way on a 
smaller timestep than the long range force:

short-range 
force-kick

drift

short-range 
force-kick

short-range 
force-kick

short-range 
force-kick

short-range 
force-kick

short-range 
force-kick

short-range 
force-kick

long-range 
force-kick

long-range 
force-kick



Parallelization:
Domain decomposition



The domain decomposition distributes particles onto different processors



The space-filling Hilbert curve is a fractal that fills the square
CONSTRUCTION OF A  FLEXIBLE DOMAIN DECOMPOSITION WITH CACHE BENEFITS

Idea: Order the particles along a space-filling curve

Mapped to CPU 1

Mapped to CPU 3



The space-filling Hilbert curve can be readily generalized to 3D
THE PEANO-HILBERT CURVE



The space-filling Peano-Hilbert is used in GADGET and other codes 
for the domain-decomposition 
 

SPLITTING UP THE TREE FOR DIFFERENT PROCESSORS



Initial conditions 
generation

● Prefabricated galaxies / halos / disks

● Cosmological initial conditions



In special cases, the distribution function for static solutions of the CBE 
can be constructed analytically
 

An integral of motion is constant along orbits, i.e.: 

Then I is a solution of the CBE.

Jeans theorem: Steady-state solutions of the CBE only depend on 
integrals of motion.

For a spherical mass distribution, a DF that only depends on energy can be 
constructed with Eddington's formula.

Hernquist halo:

where:

Example:



Construction of compound disk galaxies that are in dynamical equilibrium
 

STRUCTURAL PROPERTIES OF MODEL GALAXIES

Dark halo (Hernquist profile matched to NFW halo)
Stellar disk (exponential)
Stellar bulge
Gaseous disk (exponential)
Central supermassive black hole

Components:

One approach: Compute the 
exact gravitational potential 
for the axisymmetric mass 
distribution and solve the 
Jeans equations

M=1012 h -1M⊙



The first step in constructing an isolated galaxy model is the specification 
of the density structure of all mass components
 

DENSITY DISTRIBUTIONS OF DARK MATTER AND STARS IN BULGE AND DISK

Dark matter:

Hernquist or NFW profile

Stars in the disk:

dark matter profile

Gas in the disk:

Vertical structure given by hydrostatic equilibrium.
Depends on the equation of state of the gas.

“Isothermal sheet” with exponential profile

Disk scale length h 
determined by spin 
parameter of halo.

Stars in the bulge: Bulge scale length b 
can be set to a 
fraction of the disk 
scale-length  h.



Solving the Jeans equations allows the construction of dynamically 
stable disk galaxy models
 

MOMENT EQUATIONS FOR THE VELOCITY STRUCTURE

We assume that the velocity distribution function of dark matter and stars can be 
approximated everywhere by a triaxial Gaussian.

Further, we assume axisymmetry, and that the distribution function depends only on E and Lz 

Then cross-moments vanish:

The radial and vertical moments are given by:

The azimuthal dispersion fulfills a separate equation:

Circular 
velocity:

A remaining freedom lies in the azimuthal streaming           , which is not determined by the above 
assumptions. For the dark matter, it can be set to zero, or to a value corresponding to a prescribed spin.

Note: For the stellar disk, we instead use 
the epicycle theory to relate radial and 
vertical dispersions.



The initial conditions for cosmic structure formation are 
directly observable
 

THE MICROWAVE SKY 

WMAP Science Team (2003, 2006, 2008)



(figure from Max Tegmark)

If the initial fluctuations are a Gaussian random field, we only need to know 
the power spectrum and the cosmological parameters to describe the ICs
 

DIFFERENT PROBES OF THE MASS POWER SPECTRUM



To determine the power spectrum amplitude, we normalize the 
spectrum to observations of clustering (usually galaxy clusters)
 

FILTERED DENSITY FIELD AND THE NORMALIZATION OF THE POWER SPECTRUM

Extrapolate back to the starting redshift with the growth factor D(z)
This depends on cosmology.

Observational input: 

The filtered density field:

fluctuation spectrum of initial conditions fully specified.



To create a realization of the perturbation spectrum, a model for an 
unperturbed density field is needed
 

GLASS OR CARTESIAN GRID

glassgrid

For CDM, the initial velocity dispersion is negligibly small.

But there is a mean streaming velocity, which we need to imprint in initial conditions.



Using the Zeldovich approximation, density fluctuations are 
converted to displacements of the unperturbed particle load
 

SETTING INITIAL DISPLACEMENTS AND VELOCITIES

Particle displacements:

Resulting density 
contrast:

Density change
due to displacements:

For small displacements:

During linear growth:

Particle velocities:
Note: Particles move on 
straight lines in the 
Zeldovich approximation.

Displacement field:

Fourier realization:



One can assign random amplitudes and phases for individual 
modes in Fourier space
 

GENERATING THE FLUCTUATIONS IN K-SPACE

kx

ky

L

Simulation box

For each mode, draw a random 
phase, and an amplitude from a 
Rayleigh distribution.

sampled with 
N2 points
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