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Accuracy issues in 
cosmological simulations 



  

Different hydrodynamical simulation codes are broadly in agreement, but 
show substantial scatter and differences in detail
 

THE SANTA BARBARA CLUSTER COMPARISON PROJECT

Frenk, White & 23 co-authors  (1999)



  

Mesh codes appear to produce higher entropy in the cores of clusters
RADIAL ENTROPY PROFILE

Santa Barbara Comparison Project

Bryan & Norman 1997

Ascasibar, Yepes, Müller & Gottlöber (2003): 
Entropy formulation of SPH also gives somewhat 
higher core entropy



  

The entropy profile of the Santa Barbara cluster appears to converge well 
with SPH, yielding a lower level in the center than found with mesh codes
 

ENTROPY PROFILES OBTAINED WITH GADGET2 AT DIFFERENT RESOLUTION



  
Agertz et al. (2007)
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A cloud moving through 
ambient gas shows 
markedly different long-
term behavior in SPH 
and Eulerian mesh codes
 

DISRUPTION OF A CLOUD BY 
KELVIN-HELMHOLTZ INSTABILITIES



  

There are principal differences between SPH and Eulerian schemes
 

SOME FUNDAMENTAL DIFFERENCE BETWEENS SPH AND MESH-HYDRODYNAMICS

Eulerian Lagrangian

Truncation error not 
Galilean invariant

(“high Mach number problem”)

Galilean invariant

sharp shocks,
somewhat less sharp 

contact discontinuities 
(best schemes resolve

fluid discontinuities it in one cell)

shocks broadened over roughly 
2-3 smoothing lengths

(post-shock properties are correct though)

mixing happens implicitly at 
the cell level

(but advection adds numerical 
diffusivity and may provide a source 

of spurious entropy)

mixing entirely suppressed at 
the particle-level

(no spurious entropy production, but 
fluid instabilities may be suppressed)

self-gravity of the gas done on a mesh 
(but dark matter must still be represented by particles) 
no explicit conservation of total energy 

when self-gravity is included

self-gravity of the gas naturally 
treated with the same accuracy 

as the dark matter,
total energy conserved

no need for artificial viscosity
(in Godunov schemes)

requires artificial viscosity



  

A moving-mesh Lagrangian finite volume code can combine the 
advantages of SPH and Eulerian methods
 

KELVIN-HELMHOLTZ INSTABILITY WITH A MOVING MESH CODE

AREPO Code

Springel (2010)

 = 2
vx = 0.5
P = 2.5

 = 1
vx = -0.5
P = 2.5

 = 1
vx = -0.5
P = 2.5

periodic boundaries

50x50 resolution



  

When the mesh is fixed, the results may change if a bulk velocity is 
imposed 
 

KELVIN-HELMHOLTZH INSTABILITY AT 50 x 50 RESOLUTION WITH A FIXED MESH FOR 
DIFFERENT GALILEI BOOSTS

Boost both in x- and y- directions

This was started from a sharp initial contact discontinuity.

The truncation error in Eulerian codes is not Galilean invariant.

With enough cells, the truncation error can always be reduced, so that for 
properly resolved initial conditions, effective Galilean invariance is reached.

Nevertheless, this is an unwanted feature that is problematic for simulations 
of cosmological structure formation. Here the accuracy with which individual 
galaxies are modeled depends on their velocity magnitude.



  

The Riemann problem as basis for high-accuracy Godunov schemes
 

CALCULATION OF THE GODUNOV FLUX

ρL, PL, vL ρR, PR, vR

x

t

shock 
wave

contact 
discontinuity rarefaction 

wave

unperturbed 
right state

unperturbed 
left state

ρF, PF, vF

Assume piece-wise constant left 
and right states for the fluid

Calculate the self-similar time 
evolution (Riemann problem)

Sample the solution along x/ t=0, 
which yields the Godunov flux 

sampling



  

The “upwind side” of the flow depends on the frame of reference
 

THE GODUNOV FLUX IN DIFFERENT REFERENCE FRAMES

shock 
wave

expected mass flux in 
boosted frame:

ρF (vF+v)

BUT, in general: ρF (vF+v)  ≠  ρ∗F v*F

Numerical scheme not manifestly 
Galilean invariant

ρL, PL, vL+v ρR, PR, vR+v

Riemann problem in boosted frame

ρL, PL, vL ρR, PR, vR

x

t
contact 

discontinuity rarefaction 
wave

unperturbed 
right state

unperturbed 
left state

ρF, PF, vF

Riemann problem in default frame

x

t

shock 
wave

contact 
discontinuity 

rarefaction 
wave

unperturbed 
right state

unperturbed 
left state

ρ∗F, P*F, v*F 

sampling



  

How well does this work?



  

A differentially rotating gaseous disk with strong shear can be simulated well with 
the moving mesh code  
 

MODEL FOR A CENTRIFUGALLY SUPPORTED, THIN DISK 



  

Different examples of test problems with 
the moving-mesh code
 

High-resolution
Rayleigh-Taylor instability

Sedov-Taylor Exposion

High-resolution
Kelvin-Helmholtz instability

Rayleigh-Taylor (with visible mesh)



  

The moving-mesh approach can 
also be used to realize arbitrarily 
shaped, moving boundaries
 

STIRRING A COFFEE MUG



  

Voronoi and Delaunay tessellations provide unique partitions of 
space based on a given sample of mesh-generating points
 

BASIC PROPERTIES OF VORONOI AND DELAUNAY MESHES

Voronoi mesh Delaunay triangulation both shown together

● Each Voronoi cell contains the space closest to its generating point

● The Delaunay triangulation contains only triangles with an empty circumcircle.  The 
Delaunay tiangulation maximizes the minimum angle occurring among all triangles.

● The centres of the circumcircles of the Delaunay triangles are the vertices of the Voronoi 
mesh. In fact, the two tessellations are the topological dual graph to each other.



  

A finite volume discretization of the Euler equations on a moving 
mesh can be readily defined
 

THE EULER EQUATIONS AS HYPERBOLIC SYSTEM OF CONSERVATION LAWS

Euler equations State vector Flux vector

Equation of state:

Discretization in terms of a number of finite volume cells:

Cell averages Evolution equation 

Additional term for a moving mesh:
w is the velocity of the cell boundary



  

The fluxes are calculated with an exact Riemann solver in the 
frame of the moving cell boundary
 

SKETCH OF THE FLUX CALCULATION

The motion of the mesh 
generators uniquely 
determines the motion of all 
cell boundaries

Riemann solver
(in frame of cell face)

State left of cell face State right of cell face



  

The velocities of the mesh-generating points uniquely determine 
the motion of all Voronoi faces
 

CHANGE OF VORONOI CELLS AS A FUNCTION OF TIME

rate of change of volume of a cell

in frame that moves 
with mean velocity
(vL+vR)/2

(see also Serrano & Espanol 2001)



  

To achieve second-order accuracy, we use a piece-wise linear 
reconstruction
 

GRADIENT ESTIMATION AND LINEAR RECONSTRUCTION

ρ

Green-Gauss gradient estimation: 

x

ρ
conservative linear 
reconstruction

Slope limiting procedure: 

x

Leads to: 



  

Our second-order time 
integration scheme uses 
a half-step prediction in 
primitive variable 
formulation
 

A MUSCL-LIKE SCHEME

Face moves 

with velocity w

WL WR

sL

sR

f

Transform left and right fluid states into rest frame of face

Linearly predict the states to the midpoint of the face, and 
evolve them forward in time by half a timestep:

The prediction in time can be done with the Euler equations:

Rotate the states such that one coordinate is normal to the face

Solve the Riemann problem

Transform the solution back to the calculational frame

Calculate the net flux in the calculational frame

Update the conserved variables of 
each cell:

And finally...

w

This scheme is Galilean invariant 
if w is tied to the fluid velocity.



  

The moving-mesh code deals well will problems that 
involve complicated shock interactions
 

WOODWARD & COLELLA'S INTERACTING DOUBLE BLAST PROBLEM



  

Interacting shock waves reveal significant differences in vorticity production
 

TWO-DIMENSIONAL IMPLOSION PROBLEM

Sijacki et al. (2011)



  

The Gresho vortex test in two dimensions
 

EVOLUTION OF A STATIONARY VORTEX FLOW

Initial 
conditions:



  

The Gresho vortex test in two dimensions
 

EVOLVED AZIMUTHAL VELOCITY PROFILE FOR DIFFERENT CODES AND BOOSTS



  

The Gresho vortex test in two dimensions
 

CONVERGENCE RATE AGAINST ANALYTIC SOLUTION



  

How to construct the
Voronoi mesh



  

Construction of the Voronoi diagram is most efficiently done by 
constructing it as dual of the Delaunay tessellation
 

A FEW ALGORITHMS FOR DELAUNAY TRIANGULATIONS

2D ● Divide & Conquer (fastest)

● Sequential insertion

● Sweepline algorithm

● Projection of 3D convex hull to 3D

3D ● Sequential insertion

● Projection of 4D convex hull to 3D

● Incremental construction

Sequential insertion:

(1) Point location: Find 
triangle/tetrahedron that 
contains point

(2) Point insertion: Split 
enclosing triangle/tetrahedron 
into several simplices

(3) Flips to restore 
Delaunayhood: Replace 
edges/facets around the 
inserted point if they violate the 
Delaunay condition (empty 
circumcircle)

Most algorithms assume the 
general position assumption

Unfortunately, degenerate cases do 
occur in practice, and induce numerical 
difficulties due to numerical round-off

4 cocircular 
points !

How can we consistently break ties? 



  

Adding a point by sequential insertion

1. Step: Locate the triangle that contains the point
 



  

Adding a point by sequential insertion

2. Step: Split the triangle into three triangles
 



  

Adding a point by sequential insertion

3. Step: Legalize the new triangles
 

Edges opposite of 
new point may violate 
Delaunayhood

Ok!



  

Adding a point by sequential insertion

3. Step: Legalize the new triangles
 

Edges opposite of 
new point may violate 
Delaunayhood

not ok...!

need to 
flip edge



  

Adding a point by sequential insertion

3. Step: Legalize the new triangles
 

Edges opposite of 
new point may violate 
Delaunayhood

Ok!



  

Adding a point by sequential insertion

3. Step: Legalize the new triangles
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Delaunayhood

Ok!



  

Adding a point by sequential insertion

3. Step: Legalize the new triangles
 

Edges opposite of 
new point may violate 
Delaunayhood

not ok...!

need to 
flip edge



  

Adding a point by sequential insertion

3. Step: Legalize the new triangles
 

Edges opposite of 
new point may violate 
Delaunayhood

Ok!



  

Adding a point by sequential insertion

3. Step: Legalize the new triangles
 

Edges opposite of 
new point may violate 
Delaunayhood

Ok!



  

Adding a point by sequential insertion

4. Step: Finished! (Or insert next point)
 



  

The construction of the 3D Delaunay tessellation is significantly 
more complicated than in the 2D case - but still fast
 

FLIP OPERATIONS IN 3D

1-to-4 flip 
(point insertion) 2-to-3 flip

3-to-2 flip

If the general position assumption is not fulfilled, degenerate cases can occur. This 
makes thinks a lot more complicated. One then needs:

● 1-to-N flips for point insertion when the point lies on an edge

● 2-to-6 flips if the point lies on a face

● 4-to-4 flips for reestablishing Delaunayhood

● Accurate geometric predicates required (difficult! Occasionally requires exact arithmetic)



  

2-to-6 flip

4-to-4 flip

n-to-2n flips

3-to-6

4-to-8



  

Degenerate point configurations cause trouble – exact arithmetic is 
required to guarantee robustness
 

USE OF EXACT ARITHMETIC TO DEAL WITH POINTS IN NON-GENERAL POSITION

Is the point in the left or 
right triangle?

Or is it exactly on the line?

(boils down to evaluating the 
sign of geometric tests)

Delaunay algorithms 
tend to crash if wrong 
decisions are made!

Solution

● Calculate maximum round-off 
error in geometric tests, and check 
whether result could be incorrect

● If the decision is ambiguous due to 
floating point round-off, use exact 
arithmetic instead 

We use exact integer arithmetic if needed:

● Domain is mapped to floating point 
numbers in the range [1.0, 2.0]

● Mantissa provides a 53-bit integer 
with a unique one-to-one mapping to 
the floating point numbers

● Carry out the geometric test with the 
GMP-library using long integers



  

Galaxy collision simulation with the moving mesh code



  

There is an MHD implementation in AREPO that works reasonably well
 

EQUATIONS AND SOME TESTS

AREPO ATHENA

AREPO ATHENA

Orszag-Tang vortex test

Pakmor, Bauer & Springel (2011)

Magnetic field in a disk galaxy

div B = 0 error



  

Explizit physical viscosity has been added to AREPO to obtain a 
Navier-Stokes solver on a moving mesh
 

SOME BASIC EXAMPLES
Munoz, VS et al. (2012)

Taylor vortex flow



  

But in the end: Does it matter 
for galaxy formation?



  

Moving-mesh cosmology: First applications of AREPO

Mark Vogelsberger
Debora Sijacki
Dusan Keres
Paul Torrey
Lars Hernquist
Volker Springel

20 Mpc/h box, WMAP7 cosmology

Resolutions: 2 x 1283, 2 x 2563, 2 x 5123

AREPO and GADGET runs

equal physics, equal gravity solver

Andreas Bauer & VS (2011)

4 new papers, astro-ph (2011)

Subsonic turbulence in moving-mesh and SPH

Thomas Greif, VS, et al. (2011) 

Population III star formation 



  

On large scales, the code produces similar results as standard SPH techniques
 

GAS AND TEMPERATURE FIELDS IN A COSMOLOGICAL HYDRODYNAMIC SIMULATION

AREPO

GADGET

AREPO

GADGET

   But on small scales, galaxy morphologies look very different



  

Projected gas densities in matching AREPO and SPH halosAREPO:

SPH:



  

Projected stellar densities in matching AREPO and SPH halosAREPO:

SPH:



  

Compared with SPH, the cosmic star formation rate density is higher in 
AREPO at low redshift
 

SFR-DENSITY AS A FUNCTION OF REDSHIFT FOR DIFFERENT RESOLUTIONS AND CODES

AREPO

SPH

Vogelsberger et al. (2011)



  

Compared with SPH, the cosmic star formation rate density is higher in 
AREPO at low redshift
 

SFR-DENSITY AS A FUNCTION OF TIME FOR DIFFERENT RESOLUTIONS AND CODES

AREPO

SPH



  

The difference in star formation originates in massive halos
 

STAR FORMATION RATE AS A FUNCTION OF HALO MASS

AREPO

SPH

Vogelsberger et al. (2011)



  

Gasous disk scale lengths are much larger in the moving-mesh code
 

DISK SCALE LENGTHS AND ANGULAR MOMENTUM IN GADGET AND AREPO

Torrey et al. (2011)



  

Satellite mass loss and orbitial decay is different in SPH and AREPO
 

FIDUCIAL GAS BLOBS IN ORBIT IN A CLUSTER

Sijacki et al. (2011)



  

Clumpy gas distribution around Aquila galaxy in GADGET
 

GAS BLOBS IN ORBIT AROUND AQUILA AT DIFFERENT TIMES AND RESOLUTIONS

Also seen, e.g, in ERIS 
(Guedes et al., 2011)

(Wadepuhl & Springel, 2011)



  

Smooth gas distribution around Aquila galaxy in AREPO
 

GAS IN THE HALO AT DIFFERENT TIMES AND RESOLUTIONS

(Wadepuhl & Springel, 2011)



  

The dissipation rate in 
and around of halos is 
systematically different 
in AREPO and SPH
 

DISSIPATION RATE PROFILES 
FOR STACKED HALOS OF 
SIMILAR MASS

AREPO

SPH

Vogelsberger et al. (2011)



  

Enstrophy fields in subsonic turbulence are different in SPH and mesh-codes
 

TURBULENT FIELDS FOR EQUAL DRIVING IN DIFFERENT SIMULATION CODES Bauer & Springel (2012)



  

Driven subsonic turbulence in AREPO yields a Kolmogorov cascade
 

VELOCITY POWER SPECTRUM AT DIFFERENT RESOLUTIONS

Kolmogorov

Bauer & Springel (2012)



  

The results of Price are consistent with our own low-viscosity SPH results
 

VELOCITY POWER SPECTRA FOR DIFFERENT VISCOSITY SETTINGS

Bauer & Springel (2012)



  

The shape of the dissipation range for Kolmogorv turbulence is universal
 

REYNOLDS NUMBERS AND THE KOLMOGOROV SCALE

Kolmogorov scale:

For a Navier-Stokes flow with kinematic viscosity ν:

Dynamic range of 
inertial range:

Universality of Kolmogorov turbulence also applies to the dissipation range!

Experiments (and simulations) give a universal function for 



  

The shape of the subsonic dissipation range is problematic in SPH
 

TURBULENCE POWER SPECTRUM IN THE DISSIPATIVE REGIME

Reynolds-Numbers

Re = 2100

Re = 1000

Re = 540

The power spectrum of the 
dissipation range in SPH 
has the wrong shape!

Navier-Stokes 
version of AREPO



  

The computational cost to reach a desired Reynolds number in 
subsonic turbulence grows more quickly in SPH than in a mesh code
 

REYNOLDS NUMBER AND COMPUTATIONAL COST

Computational cost:   CPU ~ d-4,  where  d = mean cell/particle spacing

Assume that we indeed could describe SPH by:

CPU ~ Re4

In the (moving) mesh code we however find: d

CPU ~ Re3



  

There are marked differences in cold vs. hot accretion for massive galaxies
 

PAST MAXIMUM TEMPERATURE OF GAS ACCRETED ONTO CENTRAL GALAXIES

Nelson et al. (2012)



  

There are marked differences in cold vs. hot accretion for massive galaxies
 

DISTRIBUTION OF PAST MAXIMUM TEMPERATURE OF ACCRETED GAS AT  Z = 2

Nelson et al. (2012)



  

The relative importance of "hot" and "cold" modes of accretion are different 
for massive halos
 

ACCRETION RATES OF HOT AND COLD GAS AS A FUNCTION OF HALO MASS AT  Z = 2

Nelson et al. (2012)



  

At the virial radius, only moderate differences in the gas flow are seen
 

ALL-SKY MAPS OF GAS PROPERTIES AROUND A TYPICAL log(M)=11.5 HALO AT Z=2

GADGET

GADGET

AREPO

AREPO

Nelson et al. (2012)



  

At half the virial radius, pronounced differences in the gas flow are apparent
 

ALL-SKY MAPS OF GAS PROPERTIES AROUND A TYPICAL HALO

GADGET

GADGET

AREPO

AREPO

Nelson et al. (2012)
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