
High performance computing and numerical modeling
Volker Springel

Plan for my lectures

43rd Saas Fee Course
Villars-Sur-Ollon, March 2013

Lecture 1: Collisional and collisionless N-body dynamics

Lecture 2: Gravitational force calculation

Lecture 3: Basic gas dynamics

Lecture 4: Smoothed particle hydrodynamics

Lecture 5: Eulerian hydrodynamics

Lecture 6: Moving-mesh techniques

Lecture 7: Towards high dynamic range

Lecture 8: Parallelization techniques and current computing trends

Future progress with cosmological simulations requires....

Better resolution (more computing power...)

Higher accuracy of numerical codes

More complete and realistic physics models

The number of cores on the top supercomputers grows exponentially

EXTREME GROWTH OF PARALLELISM

(figure by G. Sutmann)

Currently typical supercomputers carry out about ~1-10 Petaflops

JUGENE IN JUELICH

Millennium-XXL

Largest
high-resolution
N-body simulation

303 billion particles

L = 3 Gpc/h

~700 million halos
 at z=0

~25 billion (sub)halos in
mergers trees

mp = 6.1 x 109 M⊙/h

12288 cores,
30 TB RAM on
Supercomputer JuRoPa
in Juelich

2.7 million CPU-hours

Angulo et al. (2011)

Petaflop Computer: 6 MW

One of the main problems:
Power Consumption

Exaflop Computer: ~ GW ?

Need to get this down to 20-40 MW

How long would the Millennium-XXL take on a Exaflop Supercomputer at peak performance?

15 min

Trouble ahead in the Exaflop regime ?

Parallelization with distributed memory

Many compute nodes
connected through a
fast network.

Programming usually
through Message
Passing Library (MPI)

However, some higher level languages allow different programming models.

For example PGAS languages:
● Unified Parallel C
● Coarray Fortran
● Chapel

“Beowulf cluster”

Or languages with a parallel
runtime, like Charm++

These days,
the compute
nodes are
usually SMP
or ccNUMA
machines

MULTIPLE
SOCKETS,
MULTIPLE
CORES, AND
MEMORY BANKS

A node with
4 sockets and
4 cores, in total
16 physical cores

Symmetric multi-threading (SMT) and hyperthreading (HT) of some
modern CPUs add “virtual cores”

INCREASING THE USE OF CORE RESOURCES THROUGH HARDWARE ASSISTED THREADS

Intel and IBM produce CPUs whose cores support hardware threads.

Bluegene/Q has 16 cores per node, each with 4 hardware threads,
hence one should run 64 threads for full use.

Current multi-socket SMP nodes usually have a non-uniform memory
access

DIFFERENT MEMORY ARCHITECTURES

uniform memory access non-uniform memory access
(NUMA)

compute node compute node

Current multi-socket SMP nodes usually have a non-uniform memory
access

DIFFERENT MEMORY ARCHITECTURES

uniform memory access non-uniform memory access
(NUMA)

compute node compute node

Developing MPI programs often requires severe algorithmic changes

PROGRAMMING MODEL OF MPI

● Data decomposition and all communication in the parallel code needs to be
coded explicitly.

● Doing this well represents represents a steep learning curve.

MPI is well standardized and portable, but current MPI libraries face scaling challenges

with respect to their memory need when all-to-all communication patters occur.

The shared memory of a compute nodes allow a simplified parallel
programming model through multi-threading

MULTI-THREADING

UNIX processes are isolated from each other - they have there own protected memory.

A process can however be split up into multiple execution paths, so-called threads, allowing
lightweight parallelism where data-sharing is trivially achieved.

Threads can be created by the
programmer explicitly through
the pthreads system calls, or via
OpenMP.

Example for pthreads

The two loops will be executed
concurrently by two different
threads on two different physical
cores (if available)

In OpenMP, one can easily create and destroy threads through a simple
language extension

THE FORK-JOIN PROGRAMMING MODEL OF OPENMP

Example for OpenMP● Compilers exist for C/C++ and Fortran

● Allows easy parallelization of existing code

● Thanks to shared memory synchronization
and data exchange, work-load imbalance in
parallel sections can be avoided

● Reduction of memory overhead needed for
ghost cells, bookkeeping data, etc.

cpu 0 cpu 1 cpu 2 cpu 3

quad-core node

wallclock
time

tim
es

te
p

Shared memory can be easily used for near perfect loop-level parallelism

USING MULTIPLE CORES WITH THREADS

single threaded

MPI tasksMPI tasks

● POSIX/System-V Threads

● OpenMP

cpu 0 cpu 1 cpu 2 cpu 3

quad-core node

wallclock
time

tim
es

te
p

● Threads are light-weight. Unlike processes, the
creation/destruction takes almost no time.

● They inherit all global variables and resources
(e.g. open file) from their parent process/thread.

● Mutual exclusion looks need to be used where
needed to avoid race conditions.

How to get them?

multi threaded

MPI task
Threads

Ordinary main-stream processors have acquired powerful vector
extensions

THE SSE/AVX INSTRUCTIONS OF INTEL AND AMD PROCESSORS

AVX, introduced in Intel Sandy bridge, offers registers that are 256 bit wide.

With those, one can now do:
● 4 double precision calculations in parallel, or
● 8 single precision calculations in parallel

Essentially at the same time as the usual
instructions take for a single operations.

If these instructions can be efficiently used,
substantial speed ups are possible.

In the Intel Xeon Phi Accelerator Cards, the width of these vector
instructions has been doubled yet again to 512 bit.

To use them, one either trusts that the compiler
will use in an optimum way (wishful thinking), or
one can program them using instrinsics....

vector intrinsics

Device computing is a new trend to exploit the extreme raw computational
speed of GPUs or Xeon-Phi acclerator cards

HETEROGENOUS COMPUTING

Ideally, all threads must execute
the same code, otherwise full
performance can't be reached.
Branching needs to be minimized
among the threads.

(figure by D. Aubert)

(D. Aubert)

High performance computing will offer unprecedented opportunities for
astrophysics in the coming years... and a novel programming complexity

WHO ORDERED HYBRID COMPUTING? Parallelization through: ● MPI
● OpenMP
● GPU
● SSE/AVX

But do our problems
really have a degree
of parallelism that
allows the use of a 1
billion threads?

All of this needs to be combined!

We need MPI+OpenMP+GPU codes

Roadmap to Exascale

It may be that such
machines can only be
used at scale by
science disciplines with
computationally simpler
problems compared to
what we have in galaxy
formation....

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

