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ABSTRACT 
 

We present a study of the LBT nulling interferometer (LBTI) performance considered from the control systems point of 
view. Focusing first on the fast path length corrector controller within the LBTI, we show that a simple modification of 
the controller algorithm reduces the modal tracking error by 50% or more depending on the system dynamics. WE show 
that this translates into a null depth improvement by a factor larger than 5. Next, we consider coupling the LBTI real-
time controller to that of the AO to take advantage of the high order information that is available on the LBTI phase 
sensor and we show that here again, the global performance can be improved, albeit more modestly by 20%-30%. 
 
Keywords:  Nulling interferometry, planet search, adaptive optics 

1. INTRODUCTION 
From the control systems point of view, the LBTI performance is dependent on the performance of the LBT high order 
adaptive optics system (AO and the performance of the LBTI fast pathlength corrector (FPC) which only corrects for 
differential piston, tip and tilt. We first consider the LBTI as a cascade of independent systems and present some 
derivations to obtain an optimal performance. Then we introduce a coupling between the FPC and the AO, and study 
under which circumstances control laws can be derived that will improve the overall system performance. The general 
framework of nulling interferometry is described in the references [1] and [2] while the LBTI instrument is presented in 
[3] and [4]. The figure below shows a diagram of the beam path to illustrate the general concept of the LBTI. 
 

 
Figure 1-1 : LBTI beam path diagram. The wavefront distorted by the atmosphere is sampled by the double aperture, 
AO-corrected before entering the nulling interferometer where differential piston, tip and tilt are corrected. 
Further author information : Send correspondance to F. Wildi: francois.wildi@eivd.ch 



2. DYNAMICAL MODEL OF THE LBTI 
In the first model (corresponding to the present LBTI baseline), all control loops are independent. The two AO loops 
feature implement high order correction using the two 672 actuators Adaptive Secondary Mirrors (ASM, see [5]) and 
the FPC control system measures and corrects the differential piston, tip and tilt in one of the interferometer arms. 
 
We have built a numerical model that simulates the behaviour of the LBTI mode by mode. The input wavefront is 
decomposed separately on the two entrance pupils in a number of Zernike modes. Each modal amplitude enters its own 
AO tracking loop (except differential piston that goes straight through). Downstream, the fringe tracker corrects the 
differential piston and the residual AO tip and tilt. 
 
The residual phase error is the intermediate performance criterion for both AO and FPC. Our goal is to minimise the 
rms phase of the FPC residual. 
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Figure 2-1 Our model of the LBTI (AO loops in the middle and interferometer to the right) 

2.1. Adaptive Optics loops 
The two sides of the LBT feature an identical AO system, which in our model perform phase-only corrections. The loop 
is made of a wavefront sensor (WFS), a real-time controller, a deformable mirror (DM) and computation and 
transmission delays. The table below details the elements transfer functions. 
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Pure delays are made of WFS read-out time (940 µs), reconstruction time (45 µs) and controller to DM transmission 
time (40 µs). 
 
The controller is made of an integrator and a Smith predictor. The integrator is mandatory because of the fact that the 
WFS is differential measurement device. The Smith predictor allows the controller to anticipate the system’s time lag 
and allows the controller to be dimensioned based on the un-delayed plant, the delays being somewhat compensated by 
the predictor (see [6] and [7]). 



In the absence of noise, the optimal way to 
compute the integrator gain is to minimise each 
mode’s residual phase variance ΦZ. The equation 
below symbolises the search of this minimum. 
This is done using the modal spectrum and the 
loop’s transfer function. Modifying  the integrator 
gain will change the transfer function and the 
result of the integral. One need only to compute 
the gain for which the integral is minimum. This 
is going to yield a different gain for each Zernike 
mode given that they all have their own spectra 
[8]. 
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Where 
( )fM Z   : the (Zernike) modal spectrum in the atmosphere  
)( fH   : the transfer function of the AO loop 

K  :the modal integrator gain 

 
While this method gives the integrator gain that leaves the least residual error, one must also guarantee it provides 
adequate stability margins, which are placed at de 45° and 8dB for the phase and gain respectively. The gain obtained 
using these margins is 0.48 and it is smaller than the gains obtained by minimisation of the phase error. Therefore the 
performance is limited by the system’s stability. 
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Figure 2-2 Bode plot in open AO loop  and step response in  closed AO loop (1 kHz sampling frequency)  
For a correct synthesis, the number of samples in the Smith predictor must be equal to the total pure delay in the system. 
In our case, this delay is not an integer number of sampling periods. The total delay is 1.025 ms plus ½ sampling period 
for the WFS delay. Throughout this paper we have determined empirically the best predictor by rounding off the delay 
to the lower or the higher number of periods and evaluating the step response. In the present case the optimal delay is 1 
period. 

2.2. Fringe tracker loop 
The topology of the fringe tracker loop is the same as the AO loop. The FPC just replaces the ASM albeit with only 
piston tip tilt DOF’s. Note that this loop is independent to and asynchronous with the AO. 
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Figure 2-3 Topology of our model of the null tracker loop 
 
Since the final characteristics of the FPC are not finalized, two models have been used, a « fast » 3rd order model with 
0.25ms 10%-90% rise time and 40% overshoot and a « slow » 2nd order model with 6.9ms rise-time and 10% 
overshotone. The fast one models essentially the response of the FPC PZT actuators and neglects the amplifier. The 
slow model corresponds to the response of the piezo currently available in the lab.. 
 
All other elements of the loop are the same between the fast and the slow model and they are identical to the AO loop 
elements. The controller synthesis and other derivations are the same in the two cases and only the fast model is shown 
for simplification. Simulation results however will show the performance of both models. 
 
The controller chosen in the 1st phase is also an integrator with 
Smith predictor. Here also, the integrator gain is limited by the 
system’s stability and cannot be optimised for least phase 
variance. The figure below shows that the stability is limited 
by the gain margin. 

2.3. Simulation 
To evaluate the system performance we have built an end to 
end dynamical model of the LBTI. A Kolmogorov atmosphere 
is generated as a frozen phase screen. This screen is drifted at 
constant velocity over the telescope’s entrance pupils. Since 
the model is mono-variable, the input wavefront is 
decomposed separately on the two entrance pupils in a number 
of Zernike modes. It is these time series of the modal 
amplitudes that is the input signal of each AO loop. The 
wavefront amplitude is supposed unity across the pupil.  

 

−20

−10

0

10

20

30

40

50

60

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

10
3

−360

−315

−270

−225

−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram
Gm = 8 dB (at 3.26e+003 rad/sec) ,  Pm = 73.6 deg (at 472 rad/sec)

Frequency  (rad/sec)

Figure 2-4: Bode plot in open fringe tracker loop  
 (1 kHz sampling frequency) 

Most simulation runs use V= 30m/s and r0 = 0.16m @V and last the equivalent of 10s on the sky, correcting the 50 first 
Zernike modes on the AO. The fringe tracker loop sampling rate was taken to be either 1 kHz or 500 Hz. 

2.3.1. Case study : 1 kHz fringe tracker loop sampling 
The Figure 2-5 below shows the results of a run made with the fast model and the atmosphere described above. The L/h 
graph shows the residual modal error and the R/h figure shows the cumulative quadratic error between Zernike modes 1 
to 50. 
 
Quite naturally, the residual error tends to diminish with increasing mode number since the corresponding uncorrected 
modal amplitude goes down with mode number too. Note the tip and tilt, which benefit from 2 cascaded tracking loops 
have low residuals with respect to higher order modes. As shown in the R/h figure, residual differential piston make up 
more than 50% of the total quadratic error. 
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Figure 2-5 : Standard deviation of the modal residues and cumulative sum of modal residues (first 50 Zernikes) 

2.3.2. Summary. 
Figure 2-6 sums up the performance of the 4  different configurations 
that have been tested (slow and fast FPC, 1 kHz and 500 Hz sampling 
rate). 
 
It is worth noting the following points: 
- The residual differential piston is never less that 40% of the 

cumulated error 
 

- The change in FPC sampling frequency changes only the 
performance of the piston, tip and tilt, and so does the 
modification of the FPC model. The tip and tilt which are 
corrected twice in cascade contribute only marginally to the 
error budget. Therefore the variations of the residual observed 
are essentially variations of the piston residual. 
 

- The FPC model changes the performance considerably. A 
model change there changes the phase residual by a factor 2.7 
@ 1 kHz sampling and 2.1 @ 500 Hz sampling. The residual 
error increases by a factor 1.6 if the BCP controller is slowed 
down from 1 kHz to 500 Hz using the fast FPC and by a factor 
1.2 with the slow FPC. 

 
Figure 2-6 :Cumulated  quadratic error of the first 
50 Zernike in the 4 cases considered 

 
Given that the error budget is dominated by the residual piston, it is required to reduce it if the error is going to be 
reduced in any significant way. Since this mode is only dealt with in the fringe tracker, it has to be better corrected at 
this level. The next section analyses the piston more closely and proposed an optimization of the fringe tracker 
controller to reduce the residual piston significantly. 

3. OPTIMISATION OF THE RESIDUAL PISTON 
The piston makes up 40% or more of the rms residual phase after beams combination and this justifies a specific effort 
to reduce it. The figure below shows the differential piston spectrum in open and closed loop respectively. 
 



It can be observed that even after correction, the bulk of 
the piston energy is located in the low frequencies. To 
reduce it we have tried to implement a predictor ahead 
of the controller with the intent of reducing the low 
frequency content. Different trials have been made with 
least squares extrapolators of various orders, but 
without significant improvement. The prediction has a 
low pass effect that reduces the loop gain at high 
frequencies while the goal is to increase it at low 
frequencies. Better result could probably be achieved by 
modifying the integrator gain to take that better into 
account but we have chosen to explore another 
possibility that is to implement a proportional-integral 
(PI) controller before the original integrator and Smith 
predictor controller. The effect of the PI controller is 
precisely to increase the low frequency gain without 
changing the high frequency gain. 
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Figure 3-1: : Differential piston spectrum in open and 
closed loop @ 1 kHz sampling rate 
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Figure 3-2 : Diagram of the fringe tracker control loop including the proportional-integral controller. 
The PI controller is placed ahead of the original controller. It is characterized by its cut-off frequency fPI and its gain 
KPI. This gain is set to 1 because it is redundant with the original integrator’s gain. It is now possible to first tune the 
fringe tracker loop gain as presented in 2.2 and in a 2nd phase to tune the I-component to increase the low frequency 
rejection, keeping in mind that the system’s stability must be minimally impacted. 
 
The I cut-off frequency is pushed as high as possible so that the 
low frequency gain is maximal. This frequency is limited by the 
open-loop phase margin. Figure 2-4 shows that the original 
integrator gain is limited by the gain margin and that the phase 
margin is 73°. The PI cut-off frequency is chosen so that this 
phase margin is reduced to the minimal margin tolerable (45°). 
Since the PI controller amplitude is close to 1 dB when its phase 
is -23° (73-45), the effect of the gain variation on the gain and 
phase margins is neglected. In our simulation, the controller 
parameters are set automatically and we had to limit the change 
in the system’s phase margin in cases when it interferes too 
much with the gain margin. 
 
The actual gain and phase margins are slightly different from 
the 45° and 8 dB targets because of the influence of the 
amplitude variation at the desired phase margin which we have 
neglected (see above). 
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Figure 3-3 :Bode of  PI fringe tracker loop  
 (1 kHz sampling)  



3.1. Dynamic simulations with improved controller 
The set of simulations presented in §2.3 has been repeated using the PI controller in the fringe tracker loop. The modal 
error standard deviations and the quadratic sum of the modal error is show in Figure 3-4 below (50 Zernike modes, 
1 [kHz] sampling ,with fast FPC). 
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Figure 3-4:  Standard deviation and cumulative sum of modal residues (first 50 Zernikes). The blue bars represent the 
residues achieved with the PI controller. The red bars represent the improvement with respect to the original controller 
The fringe tracker performance improvement is quite stunning, with the residual piston rms being reduced by a factor of 
2.54. The reduction factor of the residual piston achieved with the “slow” FPC is even better at 2.94. In all cases the 
residual piston error is now less than the error of modes 3, 4 and 5. 

3.2. Conclusion 
The figure to the right summarizes the results obtained with the 
4 models tested (PI, “fast” and “slow” FPC, 500 and 1000Hz 
sampling frequency). It underlines the improvements achieved 
with the better controller. 
 
The goal of improving the residual piston is achieved. It is 
reduced by a factor of at least 2.33 in the various cases 
considered. When the fast FPC is used, this residue is now 
smaller that residues of higher modes that cannot be corrected in 
the interferometer and represents only about ¼ of the total 
quadratic error. When the loop sampling frequency is reduced 
the improvement is slightly less. The residual piston is divided 
by 2.5 and 2.9 at 1[kHz] et 2.3 and 2.8 at 500[Hz], using the fast 
and the slow FPC respectively. 
 
Note that the larger the total quadratic error without the PI 
controller, the larger absolute improvement the PI controller is 
going to achieve. This is explained by the fact that the piston is 
the major contributor to the rms error when using the plain 
integrator. Therefore, a reduction of the piston error is going to 
have a large impact on the total quadratic error even if the 
relative improvement in piston is not as high. 

 

Figure 3-5 Cumulated  quadratic error of the first 50 
Zernike in the 4 cases considered  

 



4. CROSS-CONTROLLERS 
In this section, we evaluate how the information on high order residuals that is available on the fringe tracker WFS can 
be used to improve the system performance through the AO system and the high order DM in particular. The idea is to 
use the measurement of the high order components of the wavefront at the fringe tracker to improve the command that 
is generated by the AO controller. We make the simplifying hypothesis that information flows only from the nuller to 
the AO. No information regarding the AO is available to the fringe tracker controller or the cross controller. 
(unidirectional communication). We will call the “cross-controller” the controller that closes the loop around the fringe 
tracker WFS and the AO DM. 

4.1. Topology of the plant 
The two AO loops are supposed identical and therefore we can freely assume that the cross-controller applies its 
correction to a single mirror, even if it is dispatched to the 2 DM’s in parallel (and with opposite signs) in the final 
application. The cross-controller has the same structure as the other controller introduced so far : It is an integrator with 
Smith predictor. The gain element that is immediately upstream of the DM is 0.5 so that the DM command is in effect 
the average of the one produced by the AO controller and the cross-controller. Since the tip and tilt modes benefit from 
2 cascaded corrections, using the cross-controller to correct their residuals is useless and could even degrade the 
performance depending on the assynchronicity . 
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Figure 4-1: Model of the LBTI including the cross-controller 
Supposing the same sampling frequency for the AO and the fringe tracker, all dynamical components of the cross-
controller loop are identical to the ones of the AO loop. The controller itself is therefore the same too, as well as all 
closed loop dynamics which are presented in section 2.2. 
Ideally the complete system is sampled in phase, meaning that the WFS’s are read at the same time and that the cross-
controller and the AO controller produce their command at the same time. At this time, synchronicity cannot be 
guaranteed in the LBTI and we have considered the effect of assynchronicity by assuming a lag of up to one period at 
the fringe tracker level. The order of the Smith predictor was adjusted accordingly. 

4.2. Global simulation with cross-controller 
Here again, the instrument simulations have been performed with the two models of the fringe tracker. The modal 
residues of the first 50 Zernikes and their quadratic sum is shown in the Figure 4-2 below. The improvement brought by 
the cross-controller is not striking with a 20% decrease and 15% decrease in total modal error for the “fast” and “slow” 
FPC models respectively. What is worth underlining is that the extra delay that is caused by the lack of synchronisation 



between fringe tracker and AO reduces strongly the effectiveness of the cross-controller with only 7-8% reduction in 
total modal error. 
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Figure 4-2 Modal residues and cumulative sum of modal residues (first 50 Zernikes) with and w/o cross-controller, with 
and synchronous and asynchronous sampling 

4.3. Controller optimisation 
The benefits of the PI controller are also available in the case of the cross-controller. The synthesis of the pure 
integrator cross-controller loop shows a limitation by the gain margin, with a phase margin of 62°. The I-component of 
the cross-controller is dimensioned to bring this margin to our limit of 45°, using it to dig into the low frequency part of 
the residual modal error spectrum as shown in section 3 
 
When the PI-based cross-controller is introduced in the simulations, the benefits of the cross-controller appear more 
clearly. The quadratic sum of the modal errors is reduced by a factor of 1.7 for the “fast” FPC model (1.4 for the “slow” 
model). This certainly justifies the excess complexity of the cross-controller. Note that here also, delay induced by the 
assynchronicity between loops will degrade the effectiveness of the cross-controller by 50% (error reduction by 1.34 
resp 1.24 for “fast and “slow” FPC).  
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Figure 4-3 :  Standard deviation of the modal residues and cumulative sum of modal residues (first 50 Zernikes) showing 
the influence of the PI controller, of  the cross-controller and of synchronous versus asynchronous sampling. 
 



4.4. Summary 
Figure 4-4 summarizes the different results 
obtained with and without cross-controller in 
different conditions : 
 
Since it helps to correct the modes higher than Z3 
the FPC cannot correct, the cross-controller 
complements ideally the PI controller designed 
into the fringe tracker loop. 
The cross-controller is effective at reducing the 
residual error when there is no delay in its data 
flow. As soon as there is a delay in its command 
the benefits of the cross-controller fall 
considerably. Using a PI controller makes the 
cross-controller more powerful and even 
effective when a delay of one period exists. 
 
Possibly, a weighted average or even a time-
variant weighted average of the AO and cross-
controller command can further improve the 
residuals. 

Figure 4-4 : Quadratic sum of the modal residuals on the first 50 
Zernike modes (CC means cross-coupling). 

5. SPATIO-TEMPORAL SIMULATIONS 
We present in this chapter the results of a spatio-temporal (S-T) simulation of the LBTI, which we have introduced the 
fringe tracker loop optimisation presented in chapter 3. The modal simulation used in the chapters above deals with the 
modal amplitudes before and after correction. The spatio-temporal simulation computes the complete wavefront at 
every sampling period. The DM surface is computed from the modal commands and the dynamical model. This surface 
is then subtracted from the atmospheric wavefront phase to get the corrected wavefront on each pupil. The reconstructor 
is implemented so that it does not produce aliasing.  
 
The advantage of the spatio-temporal simulation is that the wavefronts descriptions are available on the telescope pupils 
(phase only) and in the interferometer (phase and amplitude). This allows the interferometer null to be computed from 
the complex field present in the interferometer. The system parameters used in the S-T simulation are the same as the 
ones used in the modal simulation except for the AO pure delay that is 0.9ms instead of 1.025ms. The different types of 
controllers (with and without PI controller) are available too, but we have taken into account implementation constraints 
that limit the controller description to a 5-tap FIR filter. Atmosphere  10m/s and 30m/s, r0 @V= 0.16m, L0 = 100m, l0 = 
10cm, pupil sampling  = 35 mm. Due to time constraints, we have only simulated the system running at 1 kHz and using 
the high bandwidth fast path length corrector model.  
 
Because of the duration of the simulation, we have chosen not to simulate long time sequences of LBTI run-time, but 
only short sequences lasting just longer than the transient after the AO is switched on. 150 draws are made of 80ms 
sequences with a new atmosphere for each draw. Only the last screen of the sequence is considered because the duration 
of the sequence is what it takes for the step response transient to disappear and reveal the true steady state 
performance.This way, it is not possible to possible to obtain modal spectra. However, since the exact same dynamics 
are modeled in both in the modal and the spatio-temporal simulations, this information in not necessary in the S-T case.  
The table below gives the nulls obtained with and without PI for different wind. The effect of the PI controller is clearly 
visible, giving a improvement in null depth between 7 and 1.5 depending on the conditions. 



 

 

 

Figure 5-1 :  PSF of the nuller with 50 Zernike correction and V=30m/s. Top figure: the null obtained with the traditional 
integrator is 5e-6. Bottom figure: with the PI controller, the null goes down to 7.5e-7 . The vertical conical structure in the 
PSF center is due to the wind. In this simulation, the wind blows from bottom to top 
 
 Pure integrator PI+I Conditions 
Null depth @ 8µm 5·10-6 8.7·10-7 V=30m/s 
Null depth @ 8µm 5.4·10-7 8.4·10-7 V=10m/s 



 

6. CONCLUSION 
The LBTI, complete with 2 AO loop and the fringe tracker has been simulated, with 2 different fast path length 
corrector models. The optimisation introduced into the fringe tracker loop is very effective at reducing the residual 
piston error. A residual piston reduction of a least 2.3 is achieved in the conditions tested, the piston making up 50% of 
the total modal error. In windy conditions, this translates into an important factor (>5) in null depth as demonstrated by 
a spatio-temporal simulation. 
 
The performance obtained with the simplest form of coupling between fringe tracker and AO is only attractive if the 2 
systems’ sampling can be synchronised in phase. If the cross-controller does have an integral component, its 
performance is attractive even without synchronous  sampling. We suspect that as much as the cross-controller, it is the 
introduction of a integral component in the AO loop that produces the improvement. In general we think important to 
optimise each level of correction (AO and fringe tracker) for itself before considering the advantages of coupling the 
two. 
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