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Abstract

Recent data have put powerful constraints on the present temperature of the
cosmic microwave background (CMB) radiation, but the standard cosmological
temperature-redshift relation, T = T0(1 + z), remains practically unverified. The
Sunyaev-Zeldovich (SZ) effect is a promising candidate for placing constraints on
T (z), the former exhibiting a slight z dependence for all non-standard models.
We discuss the possibility of using ratios of CMB intensity distortions due to the
SZ effect at different radio frequencies to determine the correct relation. Mock
SZ observations on simulated data for a fiducial ΛCDM cosmology are used in
testing how well high-frequency data from the Planck satellite will be able to
constrain T (z). For a parameterization of the form T = T0(1+z)1−a, where a = 0
corresponds to the standard relation, we find that we can recover a to an accuracy
of 10−3 at the 95% confidence level.
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1 Introduction

The current temperature of the cosmic microwave background radiation (CMB) has
been measured with unprecedented accuracy by the Far Infrared Absolute Spectrome-
ter (FIRAS) instrument on board the COBE (Cosmic Background Explorer) satellite,
and the expected blackbody spectrum of this relic from the early universe has been
demonstrated beyond doubt. In the standard Big Bang cosmology, the current temper-
ature T0 of the background radiation is related to the CMB temperature T at redshift
z by

T (z) = T0(1 + z), (1.1)

implicitly assuming that the blackbody spectrum is preserved in the redshifting of the
CMB photons. This seemingly simple relation is derived in appendix A. It should
be stressed that the results from FIRAS can only be applied to the CMB tempera-
ture and blackbody spectrum today, leaving the temperature at redshift z virtually
unconstrained by the data.

In the present analysis, we shall look at non-standard forms of the temperature-
redshift relation, and a way of constraining T (z) using the Sunyaev-Zeldovich (hence-
forth SZ) effect, a distortion of the CMB spectrum in the direction of a galaxy cluster
(the effect will be discussed in some detail in section 2). The redshift dependence of
the SZ effect vanishes in the case of (1.1), but for any other T (z) there will be a notable
dependence. Unfortunately, the effect also depends on intrinsic cluster properties, such
as the peculiar velocity and the electron temperature of the intracluster gas, making
it rather difficult to determine the CMB temperature at the redshift of a particular
cluster. However, using a large sample of clusters, this problem can be eliminated.

Data consistent with (1.1) have been presented by numerous authors, but so far
only with large error bars. Population ratios derived from absorption lines from high-
redshift quasars (e.g. Ge, Bechtold & Black 1997) can in general only yield upper
limits on T (z), because other processes could contribute to the excitation of atoms
and molecules. Battistelli et al. (2002) illustrate how the relation can be constrained
more effectively using the SZ effect, in this case applied to only two galaxy clusters. The
Planck satellite, to be launched in 2007 by the European Space Agency, will conduct a
full-sky SZE survey, making it possible to obtain much more restrictive bounds on the
CMB temperature using this method. We will here expand on the method and apply
it to simulated measurements like those to be carried out by the Planck high-frequency
instrument.

Considering the near-perfect blackbody spectrum of the CMB today, arguments
for a non-standard T − z relation may seem far-fetched, especially in light of the fact
that a non-linear relation will not preserve the blackbody shape of the spectrum unless
secondary assumptions about the vacuum through which the photons propagate are
made. Nonetheless, showing that (1.1) is really the case will strengthen the foundations
of the Big Bang cosmology and the Friedman-Robertson-Walker metric. We seek not
to introduce any new physics here; merely to rule out, if possible, models differing from
(1.1).
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We need to parameterize the temperature-redshift relation in such a way that de-
viations from the standard relation can be studied. For small deviations, assuming the
standard relation is close to the right one (or indeed, is the right one), the parame-
terization is not of immediate importance to our general discussion. We shall use the
form discussed by Lima et al. (2000), namely

T (z) = T0(1 + z)1−a, (1.2)

where a " 1 is a dimensionless parameter. For a = 0, we obtain the standard relation.
This form is not merely a matter of convenience, but is derived on the basis of a plau-
sible, though perhaps unlikely, thermodynamic cosmological scenario. The parameter
a is constrained by

0 ≤ a ≤ 1

from theoretical considerations, and further constrained by previous observations (e.g.
LoSecco et al. 2001) making it likely smaller than about 0.2.

To see how well the Planck mission will be able to constrain the free parameter,
we first need to simulate the yield of the survey, which amounts to modeling the dark
matter distribution of the universe. In this process, which is described in section 3,
we will assume the standard temperature-redshift relation, implying that it will be
inconsistent to make a significantly different from zero when simulating and fitting
to mock SZ signals (section 4). Moreover, the SZ effect is derived on the basis of a
blackbody spectrum, and it would be preposterous to assume that the blackbody we
see today derives from a non-blackbody in the past. We must therefore assume the
CMB is always a blackbody, which in the case of a $= 0 implies that the number of
photons is not conserved throughout the expansion (e.g. Ratra & Peebles 1988).

The CMB power spectrum yields powerful evidence that the universe is flat or very
close to flat (e.g. Spergel et al. 2003), and the Supernova project (e.g. Perlmutter
et al. 1999, Knop et al. 2003) has given strong limits on the contributions to the
energy density from cold dark matter and the vacuum. For our simulation we will
consider a fiducial ΛCDM cosmology with (ΩM , ΩΛ, h, σ8) = (0.3, 0.7, 0.7, 0.9). Al-
though changing these parameters has dramatic effects on the mass function and the
number of observable galaxy clusters (dark matter halos), we can easily modify the
yield of our mock observations at the end. The particular choice of cosmology thus
has little bearing on our final results, and will for the most part not affect our general
discussion.

2 The Sunyaev-Zeldovich Effect

2.1 The Non-Relativistic Diffusion Approximation

The Sunyaev-Zeldovich effect is the inverse Compton scattering of the CMB on hot
ionized gas in galaxy clusters, causing a change in the apparent brightness of the ra-
diation and a displacement of the spectrum toward the Rayleigh-Jeans regime. To a
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first approximation, the effect can be computed from the Kompaneets equation (Zel-
dovich & Sunyaev 1969, Sunyaev & Zeldovich 1970b, 1972a), which gives the change
in radiation intensity across the spectrum as

∆I =
2(kBT0)3

h2c2

kBTe

mec2
f(x)τT , (2.1)

where τT and Te are the optical depth and the electron temperature of the intracluster
gas, kB, h and c are the Boltzmann and Planck constants and the speed of light in
vacuum, respectively, me is the electron rest mass, and

f(x) ≡ x4ex

(ex − 1)2

(
x

ex + 1
ex − 1

− 4
)

(2.2)

is the spectral shape factor with the dimensionless frequency

x ≡ hν

kBT (z)
(1 + z)

at (dimensional) frequency ν. In the case of the standard temperature-redshift relation,
the z dependence vanishes so that

x =
hν

kBT0
,

and in the case of the parameterization (1.2) we shall have

x =
hν

kBT0
(1 + z)a. (2.3)

Equation (2.1) is derived in appendix B.
Aside from the thermal effect on the CMB photons, the motion of a cluster with

respect to the rest frame of the CMB will result in an additional change of the radiation
intensity. For a cluster moving at velocity vr, this kinematic effect is given by (Sunyaev
& Zeldovich 1980a)

∆Ik = −2(kBT0)3

(hc)2
x4ex

(ex − 1)2
vr

c
τT , (2.4)

where the sign convention is such that a receding cluster has a positive vr. Assuming
the effects are small, ∆I and ∆Ik can be added linearly. This convention will be used
for the remainder of the paper.

Figure 1 shows the effect of the SZ effect on the blackbody spectrum of the CMB.
Because of the small magnitude of the effect, it has to be magnified by a large factor
to be seen clearly.
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Figure 1: Blackbody spectrum of the CMB in units of (hc)2/(2(kBT0)3) (solid lines),
with the SZ spectrum shown for comparison. The dashed line in the left
panel shows the thermal effect for kBTe = 5 keV, while the dotted line shows
only the kinematic effect with vr = 500 km/s (receding). The dashed line
in the right panel shows the CMB spectrum with the thermal effect added.
The SZ signals have been computed with τ = 0.01 and multiplied with a
factor 1000 for clarity.

2.2 The Relativistic Thermal Equation

Because of the low optical depth to Compton scattering typical for galaxy clusters, τT ∼
10−2, most photons are not scattered even once, rendering a diffusion approximation
inadequate. Equation (2.1) is also manifestly non-relativistic, making it of little use
at high electron temperatures (more than a few keV). Relativistic corrections were
first calculated by Fabbri (1981); here we will follow the approach of Rephaeli (1995).
Calculating the full re-distribution in phase space and taking into account the low
scattering probability, one arrives at the following formula for the thermal intensity
change (following the notation of Rephaeli and Yankovich 1997):

∆I(x, η) = I0(x)
x3

(ex − 1)
τT [Φ(x, η) − 1]. (2.5)

Here, η ≡ mec2/kBTe, and I0(x) is the incident blackbody spectrum of the CMB. The
function Φ(x, η) is defined in appendix C. Equation (2.5) is based on the assumption
that the electrons follow a relativistic Maxwellian distribution, and derived accounting
for a variable number of scatterings per photon.

The thermal effect vanishes at around x = 3.83 or ν = 217 GHz, the latter assuming
the standard scaling of the CMB temperature with redshift. This so-called crossover
frequency, which we will denote x0, is independent of electron temperature in the
diffusion approximation, but increases slightly with Te when equation (2.5) is applied.
Although the kinematic effect is slight, the peculiar velocity has a stronger influence
on x0, owing to the fact that the peak of ∆Ik (the latter having the same shape as the
CMB blackbody) occurs at approximately the crossover frequency of the purely thermal
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effect. The location of the crossover frequency can be approximated by (Sazonov &
Sunyaev 1998b)

x0 = 3.83
(

1 + 0.3
vr

c

mec2

kBTe
+ 1.1

kBTe

mec2
+ 1.5

vr

c

)
, (2.6)

with our convention of a positive vr for a receding cluster. Equation (2.6) is a fit to
results from a Monte Carlo simulation of the combined effects of vr and Te (Sazonov &
Sunyaev 1998a). The “interference term” proportional to vr/(kBTe) shows a first-order
coupling of the thermal and kinetic effects.

Figure 2 shows the shape of the intensity shift due to the thermal effect (vr = 0) at
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Figure 2: Spectral shape of the intensity change ∆I due to the thermal SZ effect. Solid
lines show ∆I/τT in units of (hc)2/(2(kBT0)3), computed from equation (2.5)
at kBTe = 3, 6 and 9 keV. Dashed lines show corresponding intensity shifts
computed from the non-relativistic diffusion approximation (equation 2.1).

different electron temperatures. The difference between the diffusion approximation
and the relativistic treatment is obvious already at 6 keV. The effect of equation (2.3)
is shown in figure 3, where the frequency bands of the Planck high-frequency intrument
are indicated (see section 3.3). The total SZ effect is also shown for a range of typical
peculiar velocities, making the shift of x0 due to the kinematic effect evident. Note how
the whole spectrum is shifted toward lower wavelengths and intensities as vr increases,
while the effect of Te mostly lies in shifting the amplitude of the spectrum, affecting
the shape only slightly (not at all in the non-relativistic case). The latter implies that
ratios of ∆I(ν) at different frequencies ν1 and ν2,

rF (ν1, ν2, Te, vr) ≡
∆I1(ν1, Te, vr, τT )
∆I2(ν2, Te, vr, τT )

, (2.7)

will exhibit a weak dependence on the electron temperature, a fact which we will take
advantage of when fitting to a temperature-redshift relation. Note also that rF is
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Figure 3: Shape of the SZ spectrum ∆I at kBTe = 5 keV. The left panel shows the ef-
fect of varying the parameter a: the solid line has been computed for a = 0,
while the dashed and dotted represent a = 0.1 and a = 0.2, respectively.
The frequency bands of the Planck satellite are indicated, with vertical sizes
representing relative noise levels. The right panel shows the SZ spectrum
for different vr. Solid line: vr = 0. Dotted line: vr = −500 km/s (approach-
ing). Dashed and dash-dotted lines: vr = 500 km/s and vr = 1000 km/s,
respectively (receding). Units of intensity are those of figure 2.

independent of the optical depth τT , which is readily seen from equations (2.1) and
(2.5).

The redshift dependence drops out from rF when the standard T − z relation is
applied, but there is a pronounced z dependence in the general case, as illustrated in
figure 4 for a pair of frequencies well below the crossover frequency. The magnitude
of the dependence varies with ν1 and ν2, as well as with Te and vr. The choice
of frequencies is also important for other reasons, which will be elaborated upon in
section 4.

3 Simulating the Large-Scale Universe

Modeling the large-scale structure of the universe and the clustering of the cold dark
matter does not only require precise knowledge of the current values of the cosmological
parameters, such as σ8, ΩM and h, but also relies heavily on the standard Friedman-
Robertson-Lemaitre-Walker (FLRW) cosmology as the clustering of matter is highly
sensitive to the z dependence of the cosmological parameters (appendix D).

In observational astronomy, however, much of the dependence is shifted to the
sensitivity of the instrumentation used in observations; as we go to high redshifts
(z ∼ 1) we will only be able to detect the most massive dark matter halos. Thus, there
is a redshift-dependent limiting mass Mlim, depending heavily on the instrumentation
in question, which will limit our simulated observations. Given the sensitivity of the
Planck high frequency instrument, we can compute Mlim for our fiducial cosmology
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Figure 4: Theoretical rF as a function of redshift for the SZ intensity distortion at
ν1 = 100 GHz and ν2 = 143 at kBTe =3, 6 and 9 keV (dashed, solid and
dotted lines). Relativistic case with vr = 0. The dimensionless parameter a
varies from 0 to 0.1 from bottom to top for each temperature.

and obtain a catalog of observable clusters. Below this mass we need not be concerned
with the structure of mass inhomogeneities.

3.1 The Mass Function

The Press-Schechter formalism (Press & Schechter 1974) estimates the comoving num-
ber density of clusters in a given range of mass and redshift based on the two-point
correlation function of mass inhomogeneities and assuming spherical in-fall for the
collapse of over-dense regions.

A slightly modified variant based on ellipsoidal in-fall, suggested by Sheth & Tor-
men (1999), has been found to correspond well with N-body simulations. In particular,
the model agrees well with simulations due to Jenkins et al. (2001), although the for-
mula of Sheth & Tormen gives a slightly higher number of clusters at the high-mass
end. The number of clusters per unit of comoving volume at redshift z and with mass
in the interval (M , M + dM) is given by

n(M, z)dM = A

(
1 +

1
ν ′2q

) √
2
π

ρ̄0

M

dν ′

dM
e−

ν′2
2 dM, (3.1)

where the various constants and functions are explained in detail in appendix E. Al-
though the z dependence in σ8 is currently well understood, ndM is particularly
sensitive to the choice of σ8(z = 0), a parameter which is not yet constrained to a high
accuracy. A description of the systematic error due to the choice of the current value
of σ8 is described by Wang & Steinhardt (1998).

The rapid decrease in number counts with increasing mass is illustrated in figure
5, which shows n(M) at different redshifts.
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Figure 5: The mass function (equation 3.1) per decade of mass for our fiducial cos-
mology at different redshifts: z = 0 (solid line), z = 1 (dotted line), z = 2
(dashed line) and z = 4 (dash-dotted line). Adapted from Reed et al. (2003).

Multiplying (3.1) with the comoving volume element

V (z) =
DA(z)2(1 + z)2

H(z)
,

where DA is the angular diameter distance (appendix D.4) and H is the dimensionful
Hubble parameter (appendix D.1), and integrating over mass, one obtains the distri-
bution of observable clusters with respect to redshift as

dN

dz
= c

∫ ∞
V (z)n(M, z)dM, (3.2)

where c is the speed of light in vacuum. The integration is taken from the minimum
mass required for detection of a dark matter halo at redshift z, Mlim(z), which is
related to the limiting observable flux Slim of the instrumentation.

3.2 Cluster Detection

Holder et al. (2000) have determined Mlim for an interferometric array of ten 2.5 m
dishes at 30 GHz by performing mock observations on simulated SZE clusters. A more
analytical account, which we will use here, is given by Fan & Chiueh (2001) (a similar
formula is given by Battye & Weller 2003), in which the flux sensitivity Sν at frequency
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ν is related to mass M as

Sν = 2.29 × 104f(x) × 1.70 × 10−2h

(
fICM

0.1

)

×
(

1 + X

1.76

)(
7.75

0.5 |d lnρgas(r)/d lnr|rvir

)

×
(

6.8
5X + 3

)(
DA

100h−1 Mpc

)−2

(1 + z)

×
(

ΩM (0)
ΩM (z)

)1/3 (
∆c

178

)1/3 (
M

1015 h−1M$

)5/3

mJy, (3.3)

where f(x) is the spectral shape factor introduced in section 2, fICM is the ICM gas
fraction, X is the hydrogen mass fraction and DA is the angular diameter distance.
∆c is the over-density of the cluster at the redshift zvir of virialization, given for our
ΛCDM model in appendix D.3. We will assume zvir = z for the remainder of this
paper. Only the thermal SZ effect is considered in the derivation of (3.3).

The factor |d lnρgas(r)/d lnr|rvir , equal to 2 in the case of the isothermal sphere (e.g.
Kitayama & Suto 1996), should be calculated using the proper density profile. In this
paper we use the approach outlined in Tang & Fan (2003), with the gas density profile
of Navarro, Frenk & White (1997):

d ln ρgas

d ln r
rvir = −1 + 3c

1 + c
, (3.4)

where

c = 6
(

Mvir

1014h−1M$

)−1/5

.

It is easily verified that taking c = 5 introduces an error smaller than 10 % in equation
(3.4) for all masses relevant to our discussion.

Equation (3.3) can now be solved for Mlim given the limiting flux Slim(ν) at a
given significance level. It should be pointed out that (3.3) is valid only for unresolved
clusters; the case of a resolved cluster count is treated by Tang & Fan (2003). For
reasons given below, it will be sufficient to regard the unresolved case for the purposes
of this paper.

Already, we have to make assumptions about T (z) when computing f(x) from the
dimensional observation frequency. The basic premise is that we assume the standard
relation for the large-scale model of the universe outlined in this section, then we make
small deviations from it when simulating observations to check for consistency.

3.3 The Cluster Catalog

Based on equation 3.3, we compute Mlim(z) for the frequencies of the Planck high
frequency instrument. One sigma detection levels from Lamarre et al. (2003) are
given in table 1 as flux sensitivities (Sν). Only the lower frequencies will be of use
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Table 1: Expected properties of the Planck high frequency instrument (Lamarre et al.
2003).

Central Frequency (ν) GHz 100 143 217 353 545 857
Bandwidth GHz 33 47 72 116 180 283
Angular Resolution arcmin 9.2 7.1 5.0 5.0 5.0 5.0
Total Flux Sensitivity per pixel mJy 14.0 10.2 14.3 27 43 49
Flux Sensitivity Jy/sr 680 890 2500 4730 7530 8580

here, as the 545 GHz and 857 GHz channels will be largely obscured by dust emission.
The frequency band centered at 217 GHz is not suited for calculating ratios, as it is
too close to the crossover frequency.

To ensure detection, we use 3 sigma detection levels, computing Mlim for all the
central frequencies and using the frequency with the highest limiting mass in a given
redshift range when applying equation (3.2). Figure 6 shows Sν for some of the relevant
frequencies, assuming a = 0. As the different curves do not intersect, we simply use
ν = 353 GHz to compute Mlim across all redshifts, ensuring detection in all bands with
lower limiting mass. Equation 3.2 is then applied, yielding a measure of the differential
count of clusters of all observable masses with respect to z and per unit angular size
on the sky. Integrating over z to infinity, we will have the total number of observable
clusters per angular area element, allowing for a full-sky cluster count.

Differential cluster counts in the three frequency bands considered are shown in the
right panel of figure 6. As expected, the 353 GHz band yields the lowest number of
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Figure 6: Limiting mass (left) and differential cluster counts (right) as functions of
redshift in different frequency bands: ν = 100 GHz (solid lines), ν = 143
GHz (dashed lines) and ν = 353 GHz (dotted lines).

10



clusters per square degree on the sky, yielding the total number of clusters, N ∼ 6000,
in a full-sky survey.

Taking a different from zero will generally shift Mlim downward as long as a is
small and positive (as we have assumed), making the above a sufficient constraint on
the number of observable clusters.

To simulate a cluster catalog, the normalized form of equation (3.2) is used as the
probability density function for z in a random generation. Equation (3.1) should then
be normalized for the redshift of each individual cluster to assign a mass using the same
approach; due to the many consecutive integrations demanding extensive computing
time, however, we make use of binning with z increments of 0.01.

For the purpose of simulating signals for mock SZE measurements we need to know
the electron temperatures rather than the masses of the clusters. The normalization
of the standard relation Te ∼ M2/3 depends on how the density profile is taken. We
use the relation

kBTe =
(

7.75
0.5 |d lnρgas(r)/d lnr|rvir

)(
6.8

5X + 3

)

×
(

M

1015 h−1M$

)5/3

(1 + z)
(

ΩM (0)
ΩM (z)

)1/3 (
∆c

178

)1/3

keV (3.5)

with the Navarro-Frenk-White density profile discussed above. Equation (3.5) is roughly
consistent with recent observations (e.g. Finoguenov et al. 2001, Allen et al. 2001),
although there is a large error margin from the rescaling to virial mass. We add a
scatter to the temperature distribution by computing a standard deviation of 30 % of
the values obtained from (3.5), then using a normal distribution to re-calculate each
temperature. It should be mentioned that the previously introduced limiting mass
relation of equation (3.3) also relies on (3.5).

To model peculiar velocities, we follow the approach of Sheth & Diaferio (2001),
who suggest the formula

σhalo(M, z) = H0Ω0.6
0 σ−1

√

1 − σ4
0

σ2
1σ

2
−1

, (3.6)

for the standard deviation of collective peculiar velocities of massive clusters as a
function of mass and redshift. The indexed σ’s in (3.6) are given by

σ2
j (M) =

1
2π

∫ ∞

kmin

dk k2+2jP (k)W 2[kR(M)], (3.7)

where the functions P (k) and W (x) are the same ones used for normalizing the power
spectrum in the Sheth & Tormen mass function (see appendix E). The redshift de-
pendence comes in through the cut-off mode kmin determined by the Hubble radius
L = c/H(z) within which there is causal contact between all regions of space. In
our catalog, comprised mainly of clusters with low z, this dependence will be weak,
allowing us to use the approximation

σhalo(M) =
σfit

1 + (R/Rfit)η
, (3.8)
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where for the fiducial model σfit = 414.7 km s−1, Rfit = 34.67h−1 Mpc, η = 0.87 and
R is given by

R(M) =
(

3M

4πρ(z)

)1/3

, (3.9)

where ρ(z) is the mean density of the universe at redshift z.
For each cluster, we assign a velocity by taking a normal distribution with the

standard deviation given by (3.8) and a mean of zero, dividing by a factor of
√

3 to
get the radial part of the motion.

The distributions (data sets) of the relevant quantities of the simulation are illus-
trated in figure 7. Relevant correlations between the data sets are also shown.
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Figure 7: Histograms and correlations of the parameters in the cluster catalog. Upper
left, middle and right: redshift distribution, mass distribution and temper-
ature distribution, respectively. Lower left: The z − Te correlation. Lower
middle: correlation of mass and temperature. Lower right: Scatter plot
of mass versus redshift, clearly showing the behavior of the limiting mass.
Scatter plots show only a sample of 500 clusters for clarity.

As already noted, the optical depth of a cluster needs not be known to take ratios
from the SZ spectrum; however, we must model τT to get the strength of the SZ signal
and ensuring the right error propagation. The Thomson optical depth is

τT =
∫

neσT dl, (3.10)
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where the integration is along the line of sight, ne is the number density of electrons,
and σT = 6.65 × 10−25 cm−2 is the Thomson cross-section. From a simple spherical
consideration, we will assume τT ∼ M1/3, and normalize this relation using well-
known clusters. For the Abell 2163 cluster, LaRoque et al. (2002) have found the
Comptonization parameter y = 3.56×10−4, from which τT can be calculated (appendix
B). For the same cluster, Markevitch et al. (1996) find the mass within 0.5 h−1 Mpc
to be 4.3 ± 0.5 × 1014 h−1 M$. Interpreting this as the virial mass yields the relation

τT = Q

(
M

1011M$

)1/3

(3.11)

where Q = 8.01 × 10−4 from the above data. As we have merely one data point, we
will use half of this value as a worst-case scenario. With this approach, we will have
an average τT of about 10−2 in the catalog.

4 Mock Observations

4.1 Conversion of Intensity to Flux

Mock observations of flux from our cataloged clusters are carried out by computing the
SZ intensity shift at the frequencies specified in table 1, applying equations (2.4) and
(2.5). We use the Planck bandwidths, initially assuming a top-hat frequency response
of the filters. Observed SZ flux is simply the intensity change ∆I integrated over the
angular size of the cluster, i.e.

Sν(x) =
∫

∆Iν(x) dΩ. (4.1)

To carry out the integration over solid angle, we need to model the angular sizes of the
clusters and convolve with the beam profile of a given frequency channel. As a first
approximation to the angular size, we can compute the virial radius from the mass
according to (e.g. Peebles 1980)

rvir =
(

Mvir

(4π/3)ρcrit(z)∆c(z)

)1/3

, (4.2)

and calculate the subtended angle θ on the sky as

θ = 2
rvir

DA
, (4.3)

where DA(z) is the angular diameter distance. Applied to the cluster catalog, this
approach will yield angular sizes on the order of, or greater than, the typical beam
sizes of the Planck high frequency instrument (the latter ranging from 5 to 9.2 minutes
of arc). However, such an approach does not account for beam convolution, and
assuming a Gaussian profile for the beam, one finds that the majority of clusters are
in fact unresolved (Kay et al. 2001).
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Rather than modeling the flux with the full expressions taking into account the
properties of the instrumentation, such as beam convolution and the sensitivities of
the photometric channels, we will introduce an ad-hoc factor t > 1 of order unity with
which the error can be amplified (this really amounts to the same as diminishing the
signal since we will take ratios). We can then investigate how our fits to a and vr will
depend on t; in particular we will want the final fit to a to be as unbiased as possible
regardless of the magnitude of the error. The introduction of the factor will also serve
as to take into account any inaccuracy in the modeling of τT , as well as systematic
errors not accounted for in the statistical error bars of Planck. In most of what follows,
we will assume t = 2 unless otherwise stated.

Each flux is recorded adding a random (normally distributed) error using the stan-
dard deviations quoted in table 1 to the computed value, and simply multiplying by
the factor t representing the remaining properties of the instrumentation.

4.2 Frequency Sensitivity of the Method

Finding a suitable frequency pair with which to fit to T (z) amounts to little more than
trial-and-error. We can, however, get a general idea of the sensitivity to the different
parameters in the model by using arguments such as those of section 2.

Figures 8 and 9 illustrate the sensitivity of rF to Te and vr at different frequency

2 4 6 8 10 12
−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

kBTe (keV)

r F

Figure 8: Flux ratio rF = S1/S2 as a function of cluster temperature at z = 0.5 with a
varying from 0 to 0.1 by 0.02 from bottom to top. The dashed lines represent
the 100/143 GHz ratio, to which a constant −1.6 has been added for clarity,
the dotted are the 143/353 GHz ratio, and the dash-dotted are the 100/353
ratio. Here, vr = 0.

pairs. The a dependence which comes about for z $= 0 is also seen. It is evident that
those combinations sensitive to a are not necessarily also those most sensitive to the
intrinsic cluster properties.

14



−500 0 500

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

vr (km s−1)

r F

Figure 9: As for figure 8, but with kBTe = 6 keV and rF varying with vr. For clarity,
a constant -1.6 has been added to the 100/143 GHz ratio.

It has already been mentioned that rF is slightly more sensitive to vr than to Te

for any useful frequency combination. This is unfortunate, as it is much easier to
get Te independently from follow-up (e.g. X-ray) observations. To obtain passable
results, we will have to model peculiar velocities on a cluster-by-cluster basis. The
most straightforward way of doing this is to find a separate flux ratio r(v)

F especially
sensitive to vr. As any such ratio will also be sensitive to even a small change in a, we
will have to employ a method with which to fit to a and vr simultaneously. This will
be discussed in section 5.

5 Analysis

5.1 Error Propagation

For small errors, we can estimate the error in the ratio of flux S1 and flux S2 with
standard error propagation as

δrF =
S1

S2

√
δS1

S1

2

+
δS2

S2

2

. (5.1)

For errors larger than a few percent in S1 and S2, the error in rF will exhibit a
considerable skew due to the probability distribution of a ratio of normally distributed
stochastic variables. To address this issue, we use the Boole-Bonferroni method, using
the endpoints of a 68% confidence interval (1 sigma) for each flux to define a confidence
interval for the ratio. The ratio confidence interval is then rescaled to 68% using the
proper statistical factor, approximating with normal distributions on either side of the
expectation value.
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For simplicity, we assume precise and unbiased knowledge of the electron temper-
atures in the catalog, and account for errors in measurements of such by somewhat
overestimating our remaining errors. We will have to model the errors due to peculiar
velocities more carefully; not only because of the limited precision with which these
can be fitted for from the SZ data, but also because rF is more sensitive to vr than to
Te.

We will use a separate frequency ratio r(v)
F with ν1 = 143GHz and ν2 = 353GHz

when fitting to vr for each individual cluster. Error bars on each peculiar velocity
will be converted into error bars in the ratio rF used for the CMB temperature by
simply calculating this ratio at the endpoints of the 68% confidence interval of vr. The
systematic errors are then added in quadrature to the random errors.

5.2 Statistical Tests of the Data

To get an idea of how well we should expect to be able to constrain the T−z relation, we
initially conduct statistical tests of how well (hypothetical) universes of with different
T (z) can be distinguished when using the type of data described in the above.

Figure 10 gives a first indication of how the inclusion of vr severely mixes distribu-
tions with different a, making clusters at high redshifts especially important. To get
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Figure 10: Comparison of data sets for the 100/143 GHz ratio acquired using vr = 0
(left) and simulated peculiar velocities (right) for different T - z relations:
a = 0.0 (triangles), a = 0.1 (crosses) and a = 0.2 (x-marks). Compare to
figure 4.

a first quantitative measure, ratio distributions acquired using different values of a, ai

and aj , are compared to see how small we can make ∆a ≡ |ai−aj | while still being able
to distinguish the data sets (typically, aj = 0 is used). The Kolmogorov-Smirnov (KS)
statistical test is employed in testing whether the data sets are distinct; in particular,
the significance level p for the null hypothesis that the data sets are drawn from the
same statistical distribution is computed for each ∆a. The influence of the size of the
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cluster catalog in distinguishing the data sets is also investigated. For the time being,
we adopt the somewhat arbitrary (and rather generous) convention of taking two data
sets for which p is below the value 0.01 to be distinguishable. In the next section we
will offer a more precise treatment of constraining a.

Figure 11 shows the results of our statistical tests for different sizes of cluster
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(a) 100 clusters for each value of a.
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(b) 1000 clusters for each value of a.

Figure 11: Kolmogorov-Smirnov tests for mock observations of cluster catalogs of vary-
ing sizes and for varying a. Pentagrams show significance levels p (see text)
for the 100/143 GHz ratio, while corresponding tests for the 143/353 GHz
ratio are represented by triangles.

catalogs. Of our sample ratios, the 100/143 GHz ratio, henceforth rF 12, is clearly the
most suitable for constraining the temperature redshift-relation. KS tests have been
carried out for all the ratios appearing in figures 8 and 9; however, only the two with
the most favorable results are shown in figure 11.

These initial tests are promising; using observations of as little as 100 clusters, we
should be able to tell apart models which differ in a by as little as 0.02. The 100/143
GHz ratio is orders of magnitude more sensitive to a than the other ratios; it will
therefore suffice to use this ratio in the subsequent analysis, and it will not be of any
practical use to combine measurements at more than two frequencies. The sample size
shown in figure 11(b) is close to the size of our simulated catalog; we should therefore
expect the error in a fit to a to be on the order of the ∆a distinguishable in the tests
described here.

5.3 Fits to vr and a

Owing to the degeneracy of vr and a, it is not possible to fit to one without knowing
the other. It is also difficult to carry out a fit for both parameters at the same time,
since the former is a parameter unique for each cluster, and the latter is a universal
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constant, valid for all clusters in the catalog. We therefore make use of the following
iterative procedure to find a:

1. As a first guess, a(i) = a(0) = 0 is chosen.

2. Each cluster in the catalog is fitted to vr using a χ2-fit to the 143/353 GHz
ratio (in most cases, this really amounts to nothing more than solving for vr

numerically, as we have only one data point). Errors are modeled according to
section 5.1.

3. Using the velocities from step 2, a(i+1) is estimated from a χ2-fit of the 100/143
GHz ratio to the entire catalog.

4. Step 2 is repeated with the new value of a obtained in step 3. Iteration is
continued until self-consistency is achieved or until a diverges.

The criterion for divergence in step 4 is obvious; if it is the case that |a(i+1)−a(i)| >
|a(i) − a(i−1)| for a succession of iterations, the method is failing. It has been found,
however, that separate occurrences of such inconsistencies can still lead to a subsequent
convergence.

The convergence criterion is

|a(i+1) − a(i)| < ε

for some sufficiently small ε chosen such that ε " σa, where σa is the estimated error
in a at the 68% confidence level:

1
σ2

a
=

1
2
∂2χ2

∂a2
. (5.2)

Typically, the velocities inferred from step 1 have error bars roughly the same order
of magnitude as the velocities themselves, making these results of little use other than
for the following fit to a.

6 Results

In general, the iterative process described above converges in less than ten iterations
for all a < 0.2. For our fiducial cosmology with a catalog of about 6000 clusters, we
find σa * 5 × 10−4 when setting a = 0, which means we should be able to constrain a
to an accuracy of 10−3 at the 95% confidence level, assuming the statistical method is
robust and without bias. Using other values of a in the relevant range has merely a weak
impact on σa. To test the robustness of the method, several consecutive simulations
have been run with a = 0 as input, and the results of the fits are shown in figure
12. Any deviation from a = 0 on average is orders of magnitude smaller than σa,
and the skew of the distribution is negligible. Moreover, the value of σa estimated
from equation (5.2) is in agreement with the spread of the consecutive fits. It is also
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Figure 12: Histograms of fits to 180 consecutive simulations, all with a = 0 as input.
The left panel shows the result when first fitting to vr, and the right shows
the resulting bias when vr = 0 is assumed in the fit to a.

obvious from figure 12 that it is insufficient to fit to a assuming vr = 0; although the
expectancy value of the velocity distribution is zero, the non-linear contributions of
velocities with opposing signs to rF do not cancel.

A sample of fitted velocities from a final iteration is shown in figure 13. The
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Figure 13: Sample of 50 fitted peculiar velocities vr
(fit) with error bars versus simulated

velocities vr
(fit). The dotted line shows the desired vr

(fit) = vr
(sim). a = 0

was used as input in the simulation.

distribution of peculiar velocities can also be used as a check that we are converging
towards the correct value of a. We expect the distribution to approach not the original
one, but one with additional scatter from the uncertainty in the fit. The mean should
approach zero, and the skew should be small. This is illustrated in figure 14.

Next, we study the effects of varying the cluster catalog size N and the magnitude
of the error in recorded flux, the latter described in terms of the parameter t discussed
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Figure 14: Convergence of the method, verified by estimated moments of the velocity
distribution. As a approaches the value 0.2 used in this particular simula-
tion, the mean and skew of the vr distribution approach zero.

in section 4.1. t = 2, which has been used in the above, corresponds to an average
error of about 12 % in individual flux recordings for all relevant frequency bands. The
influence of N and t on σa is shown in figure 15 for a set of simulations. Assuming
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Figure 15: 68 % confidence intervals on a from simulations varying in catalog size N
(left) and in the parameter t (right). t = 2 in the left panel, while N = 6000
has been used when varying t.

t = 2, the results indicate that a sample of as little as 100 clusters can constrain a to
a precision of about 0.01. In the range of t studied (up to an average error of about
40 % in flux), no bias with respect to a has been found.
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7 Conclusion

We have investigated the possibility to constrain the cosmological temperature-redshift
relation using ratios of SZ observations in different frequency bands. We have seen that
this approach to some extent diminishes the effects from parameters unique for each
cluster, although these parameters must be modeled for an accurate treatment. A
simulation of observations on about 6000 galaxy clusters has been employed to test
the method. The basic assumptions are the following:

1. The temperature-redshift law is parameterized as T = T0(1 + z)(1−a), where
0 ≤ a < 0.2 from theory and previous observations.

2. We choose a fiducial ΛCDM cosmology with (ΩM , ΩΛ, h, σ8) = (0.3, 0.7, 0.7, 0.9)
and assume a full-sky survey.

3. The Sheth-Tormen mass function for the distribution of dark matter halos in the
universe is assumed.

4. The electron temperature and redshift of each cluster are assumed to be known.

The fiducial cosmology chosen has no impact on the method devised for fitting to
the parameter a from a catalog of clusters. It does, however, have a strong influence on
the distribution of observable clusters at different redshifts, and influences the precision
with which the T -z relation can be constrained.

After initial tests, we have chosen the 100/143 GHz frequency pair for the fit to a,
while the 143/353 GHz pair has been found useful when fitting to vr. The main results
can be summarized as follows:

1. The parameter a can be constrained to within 10−3 at the 95 % confidence level
from a catalog of about 6000 cluster inferred from the fiducial cosmology and
assuming the resolution of the Planck high-frequency instrument.

2. The iterative process of fitting to a and vr is found to converge without bias for
a ≤ 0.2 and with average errors in flux up to at least 40%.

3. Fitting to a without first fitting to vr introduces a bias with respect to a with an
offset of about 2 × 10−3 as a result. Thus, for a catalog of clusters significantly
smaller than our simulated one, it would be sufficient to assume vr = 0 in a fit
to a, as the error in a would be much greater than the bias.

Electron temperatures could be inferred from X-ray observations, but this would
require lengthy follow-up observations. Furthermore, X-ray observations give electron
temperatures in the centers of galaxy clusters, and such temperatures could vary sig-
nificantly from the effective line-of-sight values responsible for thermal SZ spectra.
Developing our method further, it would be possible to fit to Te from data in an ap-
propriately chosen pair of frequency bands. Such an approach would simply introduce
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an additional step in the iterative method described in the above, but would also con-
tribute to larger errors in the fit to the T -z relation with a possible bias as a result.
This is a problem which will need to be investigated further.

It remains to model the systematic errors in the data introduced by contamina-
tion from astrophysical sources which emit in the relevant SZ frequencies. Recent
findings suggest that interstellar dust emission, infra-red galaxies and primary CMB
anisotropies can be responsible for systematic errors up to a factor of 5 times larger
than the expected error bars for the Planck high-frequency instrument (Aghanim et
al. 2004). This could put severe limitations on the estimation of any cosmological or
cluster parameter from blind SZ surveys.
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A The Temperature of the CMB in the Standard (FLRW)
Cosmology

In the standard hot Big Bang model, the early universe is an almost perfect blackbody,
photons being continuously created, absorbed, annihilated and re-emitted. Under such
conditions, we expect the mean number of photons in a given oscillation mode to follow
a Planck distribution characterized by a single temperature T:

n̄ =
1

ehν/kBT − 1
, (A1)

where ν is the frequency of the oscillation mode with wavelength λ = c/ν.
At a given cosmic epoch, we divide all of space into identical boxes with volume

V = L3, where L + λ and λ = 2π/k (where k is the wavenumber) is the longest
wavelength under consideration. For the plain wave of each oscillation mode, ψ = eik·r,
we impose periodic boundary conditions of the form

ψ(x + L, y, z) = ψ(x, y, z),
ψ(x, y + L, z) = ψ(x, y, z), (A2)
ψ(x, y, z + L) = ψ(x, y, z).

This will quantize the propagation vector k, which we write

k =
2πn
L

, (A3)

with n = (nx, ny, nz) a set of integers. It is now straightforward to calculate the
number of possible plane wave states between k and k + dk. One finds

∆Nk =
V

(2π)3
4πk2dk, (A4)

where the factor 4π comes from an integration over all possible emission angles. Tak-
ing into account that there are two possible polarization states for each photon with
frequency ν, we can compute the number density of photons per unit volume with
frequency between ν and ν + dν. From (A1) and (A4) we find

n(ν; T )dν =
4
c3

ν2dν
ehν/kBT − 1

. (A5)

To relate these results to the temperature of the microwave background today, consider
the definition of the redshift,

1 + z ≡ λobs

λemit
, (A6)

implying that
ν0 =

ν

1 + z
. (A7)
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Equation (A7) allows us to re-scale (A5) to the present:

n(ν; T )dν = n(ν; T0)dν0 · (1 + z)3, (A8)

i.e. the photon density preserves the blackbody spectrum and scales as the inverse
volume of the universe. The temperature then decreases linearly with the radial scale,
which in the FLRW model is simply (1 + z):

T0 =
T (z)
1 + z

,

or, equivalently,
T = T0(1 + z). (A9)

B A Non-Relativistic Derivation of the Thermal SZ Ef-
fect

In a non-relativistic scattering process, the change in the occupation number n(ν),
where ν is the frequency, is approximated by the Kompaneets equation

∂n

∂y
=

1
x2

e

∂

∂xe
x4

e

(
∂n

∂xe
+ n + n2

)
, (B1)

where xe ≡ hν/kBTe and Te is the electron temperature characteristic for the scattering
(do not confuse xe with x ≡ hν/kBT0). The change of n(ν) is given with respect to
the Comptonization parameter y, which in the case of radiation passing through an
electron cloud can be written

y =
∫

neσT
kBTe

mec2
dl, (B2)

where ne is the number density of the electron gas. σT is the Thomson cross-section,
and (neσT )−1 can thus be interpreted as the scattering mean free path. The integration
is along the line of sight of the electron cloud. Since the CMB is significantly colder than
an electron cloud in a galaxy cluster, xe is sufficiently small to rewrite the Kompaneets
equation as

∂n

∂y
=

1
x2

e

∂

∂xe
x4

e
∂n

∂xe
.

The right hand side of this equation is homogeneous, which allows us to replace xe by
x. Then, changing variables from x, y to ξ, y, the substitution ξ = 3y + lnx yields

∂n

∂y
=

∂2n

∂ξ2
,

and the solution to this equation can be written in the form

I(ν) =
∫ ∞

−∞

1√
4πy

exp
(
−(s + 3y)2

4y

)
I0(ν0)ds, (B3)
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where s = ln(ν/ν0) and it is assumed that scattering occurs from frequency ν0 to ν.
I0(ν) is the intensity of the incident CMB blackbody spectrum, i.e.

I0(ν) =
2hν3

c2

(
ehν/kBT0 − 1

)−1
. (B4)

At low optical depth and low temperatures, y is sufficiently small to render the ap-
proximation

∂n

∂y
=

∆n

y

valid. This may be used directly in the simplified Kompaneets equation to obtain

∆n = xy
ex

(ex − 1)2
(x coth(x/2) − 4), (B5)

with a corresponding intensity shift given by

∆I(x) = x3∆n(x)i0, (B6)

where i0 = 2(kBT0)3/(h2c2). This result can also be obtained directly from taking
(B3) in the limit of small y.

It is convenient to introduce the spectral shape factor

f(x) ≡ x4ex

(ex − 1)2
(x coth(x/2) − 4) =

x4ex

(ex − 1)2

(
x

ex + 1
ex − 1

− 4
)

(B7)

to take care of the x dependence in ∆I(x). Furthermore, the Comptonization param-
eter y is often expressed in terms of the Thomson optical depth τT . The relationship
is

τT =
∫

neσT dl = y
mec2

kBTe
,

where once again the integration is along the line of sight. It is usually assumed that
Te is constant throughout a galaxy cluster, and so it is not included in the integration.

Expressed in terms of τT and f(x), the intensity shift from the thermal SZE is

∆I(x) =
2(kBT0)3

h2c2

kBTe

mec2
f(x)τT , (B8)

which is our final expression.

C Relativistic SZ Formulae

The following expressions, taking into account relativistic effects on the thermal SZ
effect, are derived using a frequency redistribution based on a fully relativistic velocity
distribution, derived by Rephaeli (1995). The latter article contains a number of typo-
graphical errors, and the expressions given here are those of Rephaeli and Yankovitch
(1997). The spectral distortion is given by

∆I(x, η) = Ĩ0(x)τT [Φ(x, η) − 1], (C1)
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where η = mec2/kBTe and Ĩ0(x) = I0(x)x3/(ex − 1). As usual, I0(x) is the incident
blackbody spectrum. Furthermore,

Φ(x, η) = A(η)[φ1(x, η) + φ2(x, η)], (C2)

where

φ1(x, η) =
∫ 1

0

t(ex − 1)dt

ext − 1

∫ 1

βm

βγe−η(γ−1)dβ

∫ 1

µm

q1(t, µ,β)dµ, (C3)

φ2(x, η) =
∫ 1

0

(ex − 1)dt

t3(ex/t − 1)

∫ 1

βm

βγe−η(γ−1)dβ

∫ µM

−1
q2(t, µ,β)dµ. (C4)

In these expressions, γ is the Lorenz factor at velocity v = βc, βm = (1−t)/(1+t), µm =
(1 − t − tβ)/β, and µM = (t − 1 + β)/β. The functions q1 and q2 are given by

q1(t, µ,β) =
(3µ2 − 1)[(1 − βµ)/t − 1]2/β2 + 3 − µ2

(1 − βµ)2
; (C5)

q2(t, µ,β) =
(3µ2 − 1)[(1 − βµ)t − 1]2/β2 + 3 − µ2

(1 − βµ)2
, (C6)

while A(η) is defined as

A(η) =
3

32
∫ 1
0 β5γ2e−η(γ−1)dβ

. (C7)

Note that γ is easily expressed in terms of β:

γ =
1√

1 − β2
.

D The Redshift Dependence in Some Cosmological Pa-
rameters and Quantities

D.1 The Hubble Constant

Ignoring the effects of radiation, the z dependence in the expansion rate of the universe
is given by

H2(z) = H2
0 [ΩM (1 + z)3 + (1 − ΩM − ΩΛ)(1 + z)2 + ΩΛ], (D1)

where H0 is the value of the Hubble constant at the present epoch, and ΩM and ΩΛ

are the matter density and dark energy density, respectively, at z = 0 and in units of
the critical density

ρcrit =
3H2

0

8πG
.

For brevity, we define the quantity

E2(z) ≡
(

H(z)
H0

)2

= ΩM (1 + z)3 + (1 − ΩM − ΩΛ)(1 + z)2 + ΩΛ. (D2)
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D.2 Density Parameters

To see how the matter density parameter ΩM scales with the redshift, consider its
definition

ΩM (z) ≡ ρ(z)
ρcrit(z)

, (D3)

where the (physical) matter density ρ(z) scales as (1 + z)3. Direct application of the
latter yields

ΩM (z) =
ρ0(1 + z)3

ρcrit(0)
ρcrit(0)
ρcrit(z)

.

Identifying the components of this expression, we find

ΩM (z) =
ΩM (0)
E2(z)

(1 + z)3. (D4)

The treatment of ΩΛ is analogous. If we assume a cosmological constant, the dark
energy density will not scale with redshift, and we shall have

ΩΛ(z) =
ΩΛ(0)
E2(z)

. (D5)

D.3 The Cluster Over-Density at Virialization

For a flat universe in which ΩM < 1, the cluster over-density at the redshift zvir of
virialization, ∆c, is approximated by the expression (Kitayama & Suto 1996)

∆c ≡
ρvir(zvir)
ρ̄(zvir)

* 18π2(1 + 0.4093w0.9052
f ), (D6)

where
wf ≡ 1

Ωf − 1
. (D7)

Here, Ωf is the the density parameter at virialization, given by

Ωf = ΩM
(1 + zvir)3

E2(zvir)
. (D8)

D.4 The Angular Diameter Distance

The angular diameter distance DA at redshift z is given by

DA =
cZ(z)
H0

J([1 − Ωtot]Z2(z))
1 + z

, (D9)

where

J(x) =






sin
√
−x√

−x
, x < 0;

sin
√

x√
x

, x > 0;
1 x = 0,
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and 1 − Ωtot is the curvature of space-time. Obviously, J(x) = 1 in any critical (flat)
universe. The function Z(z) is the integral

Z =
∫ 1

1
1+z

da

a
√

X
,

in which
X(a) =

ΩM

a
+ ΩΛa2 + (1 − ΩM − ΩΛ).

Here, the density parameters are those at the present epoch, and the contribution from
radiation to the total energy density of the universe has been disregarded.

E The Sheth-Tormen Mass Function

As a function of redshift, the cluster abundance in a mass interval (M, M + dM),
expressed as the number of clusters per unit of comoving volume, is estimated by the
expression

n(M, z)dM = A

(
1 +

1
ν ′2q

)√
2
π

ρ̄0

M

dν ′

dM
e−

ν′2
2 dM, (E1)

where ν ′ =
√

aν, a = 0.707, A ≈ 0.322 and q = 0.3. ρ̄0 is the current background
matter density of the universe, i.e. ρ̄0 = ρcritΩM (z = 0). ν is given by

ν =
δc

D(z)σ(M)
,

with δc ≈ 1.69 a dimensionless constant and

D(z) =
g(z)

g(0)(1 + z)
.

Here, g(z) is the suppression factor for linear growth, approximated by

g(z) ≈ 5
2
ΩM [Ω4/7

M − ΩΛ + (1 + ΩM/2)(1 + ΩΛ/70)]−1, (E2)

where it is implicitly assumed that (see appendix D.2)

ΩM = ΩM (z), ΩΛ = ΩΛ(z).

σ(M) is defined through

σ2(R) =
1

2π2

∫ ∞

0
k3P (k)W̃ 2(kR)

dk

k
, (E3)

where R is related to M by

R(M) =
(

3M

4πρ̄0

)1/3

. (E4)
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The function W̃ (u) varies with u ≡ kR as

W̃ (u) =
3(sinu − u cos u)

u3
,

and the power spectrum P (k) for the two-point correlation function is modeled using
the relation P ∼ kT 2, where

T (q) =
log(1 + 2.34q)

2.34q
[1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]−1/4;

q ≡ k

ΩMh2Mpc−1 .

The normalization of σ is achieved by including the constant factor C in P (k) such
that

C2 =
σ8

σ(R = 8h−1Mpc)
.

F Using the SZ Effect to Constrain H0

The value of the Hubble constant has recently been constrained to 72±8 km s−1 Mpc−1

using a combination of distance determinations based on observations of Cepheids (see
Freedman et al. 2001). The Sunyaev-Zeldovich effect provides a way of constraining H0

independently of the cosmic distance ladder. Although the shift of photons to higher
frequencies caused by the SZ effect is essentially redshift independent, a combination
of interferometric SZE observations and X-ray measurements of a galaxy cluster yields
a measure of the angular diameter distance DA (e.g. Holder et al. 2000), which can be
compared to a separate measurement for the redshift. DA is related to z and H0 by

DA =
cZ(z)
H0

J([1 − Ωtot]Z2(z))
1 + z

, (F1)

where J(x) = 1 for a flat cosmology (Z(z) and J(x) are defined in appendix D.4). The
z dependence in DA is shown for different cosmologies in figure 16, along with observed
values of DA and z from Reese et al. (2002).

A χ2-fit to the numerical data gives H0 = 60 ± 4 km s−1 Mpc−1 (68 % confidence
interval) for a ΛCDM cosmology with ΩM = 0.3 and ΩΛ = 0.7. The angular diameter
distance is not quite as sensitive to the density parameters as to H0. It is thus not
suitable to attempt a fit to ΩM or ΩΛ.

Figure 16(b) clearly shows that the value H0 = 72 ± 8 km s−1 Mpc−1 provides a
poor fit to the present data. It should be considered, however, that the gas distribution
in clusters, if not uniform, could cause a severe underestimation of H0 using the method
described above (Carlstrom et al. 2000).
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Figure 16: DA(z) in different cosmological models. Solid lines represent the standard
ΛCDM cosmology, dashed lines an open universe with ΩM = 0.3 and no
dark energy and dotted lines a flat ΩM = 1.0 universe. Error bars show
observations from Reese et al. (2002)
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