Tackling The Dark Universe With Euclid

Adam Amara ETH, Institute for Astronomy

Talk Outline

What we know about the Dark Universe:

- Dark Matter
- Dark Energy

iCosmo

- Online calculations
- wiki pages teaching resource
- public source coe

Outline of the Euclid mission

- History (DUNE and SPACE)
- Main Science Objectives
- Current mission

Challenges and GREAT08

- Lensing potential and challenges
- The GREAT08 pascal challenge

The Cosmological Model

The Cosmological Model

The Dark Energy Zoo

The Dark Energy Zoo

iCosmo: cosmology for every level

Repository of web-based resources for cosmology:

- www.icosmo.org
- Background material on several topics in cosmology
 - (wikipages so still growing)
- Web based cosmology calculations
 - (very easy to use)
- Publically available source code
 - (transparent box i.e. opposite of black box)

ESA Cosmic Vision

- Calls for both M and L Class missions
 The M class launch in 2017
- Two of the entries in the astronomy category proposed measuring dark energy and dark matter (DUNE and SPACE)
- These were ranked top of the proposals by AWG
 - DUNE Centered on weak lensing
 - SPACE Centered on galaxy correlations
- Two missions merged to form Euclid
- Own selection to two M class missions next year

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Monday, November 17, 2008

Department of Physics/Institute for Astronomy

DUNE (The Dark Universe Explorer) - Space based

• Consortium for ESA proposal:

- France: Refregier, Bedered, Boulade, Amara, Mellier, Pain, Aghanim, Puget, Casoli, Astier, Milliard, etc
- Italy: Scaramella, Maoli, Amendola, etc
- UK: Peacock, Lahav, Frenck, Silk, Bridle, etc
- Germany: Schneider, Bender, Walter-Rix, Bartelmann, etc
- Switzerland: Meylan, Lilly, Seljack, etc
- US (JPL): Rhodes, Moustakas, Hong, etc, + others ← NIR module

•Steering Committee:

Refregier (Chair, France), Peacock (UK), Bridle (UK), Walter-Rix (Germany), Schneider (Germany), Astier (France), Milliard (France), Scaramella (Italy), Moscardini (Italy), Lilly (Switzerland), Meylan (Switzerland), Rhodes (US), Hong (US)

Working Groups (coordinators):

- Weak lensing: Amara (France), Taylor (UK)
- Theory: Amendola (Italy), Seljak (Switzerland)
- Supernovae: Della Valle (Italy), Hook (UK)
- BAO: Baugh (UK), Castender (Spain)
- Galaxy evolution: Sommerville (Germany), Carollo (Switzerland)
- Clusters/CMB: Aghanim (France), Weller (UK)
- Strong lensing: Bartelmann (Germany), Moustakas (US)
- Galactic studies: Grebel (Switzerland), Zinnecker (Germany)
- Photo-z's: Lahav (UK), Fontana (Italy)
- Image simulations: Rhodes (US), Moscardini (Italy)

Instrumental group.

SPACE - the SPectroscopic All-sky Cosmic Explorer

Spectroscopic red-shifts of galaxies in extra-galactic sky
Measure dark energy using galaxy correlation function
Galaxy spectra allow large number of other science goals
P.I. A. Cimatti

High quality imaging for weak lensing
 Near Infra-red photometry
 Near Infra-red spectroscopy

• Imagining:

- CCD focal plane for visible imaging
- NIR focal plane for Photometry

Spectrometry

- DMD for slits
- spectral resolution R400
- NIR detectors

Primary Science Goals

Issue	Target
What is Dark Energy	Measure the DE equation of state parameters w_0 and w_a to a precision of 2% and 10%, respectively, using both expansion history and structure growth.
Test of General Relativity	Distinguish General Relativity from the simplest modified-gravity theories, by measuring the growth factor exponent γ with a precision of 2%.
The nature of dark matter	Test the Cold Dark Matter paradigm for structure formation, and measure the sum of the neutrino masses to a precision better than 0.04eV when combined with Planck.
The seeds of cosmic structures	Improve by a factor of 20 the determination of the initial condition parameters compared to Planck alone.

- Entered industrial study phase:
 - Two industry contractors are studying the entire mission
 - Imaging consortium (VIP and NIP) former DUNE team
 - Spectroscopic consortium (NIS) former SPACE team
- Teams studying both the science and engineering
- My main focus is weak lensing and the weal lensing requirements.

Aside: NASA has also placed a dark energy mission as there top priority (JDEM)

Current and Planned Lensing Surveys

Survey	Diameter (m)	FOV (deg2)	Lensing Area (deg2)	Start (out of date)
DLS	2 x 4	2 x 0.3	28	1999
CFHTLS	3.6	1	172	2003
VST	2.6	1	100	2006
VISTA/Darkcam	4	2	10,000	2008?
DES	4	2.2	5,000	2008
Pan-STARRS	4 x 1.8	4 x 4	20,000	2008
LSST	8.4	7	20,000	2012
DUNE	1.2 → 1.5	0.5	20,000	2015
JDEM	2.0 → 1.8	0.7	1,000 ?	2013-2018

Lensing examples: Giant Arcs

Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScl, ST-ECF) • STScl-PRC00-08

HST • WFPC2

Monday, November 17, 2008

Lensing examples: Einstein Rings

Einstein Ring Gravitational Lenses

Hubble Space Telescope - ACS

		6,	
J073728.45+321618.5	J095629.77+510006.6	J120540.43+491029.3	J125028.25+052349.0
J140228.21+632133.5	J162746.44-005357.5	J163028.15+452036.2	J232120.93-093910.2

ΞH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Simulated DUNE data (simulations by Tessyier et al)

Following slides from Sarah Bridle

BY SARAH BRIDLE¹, JOHN SHAWE-TAYLOR¹, ADAM AMARA², DOUGLAS APPLEGATE³, SREEKUMAR T. BALAN¹, JOEL BERGE^{4,5,6}, GARY BERNSTEIN⁷, HAKON DAHLE⁸, THOMAS ERBEN⁹, MANDEEP GILL¹⁰, ALAN HEAVENS¹¹, CATHERINE HEYMANS^{12,19}, WILL HIGH¹³, HENK HOEKSTRA¹⁴, MIKE JARVIS⁷, DONNACHA KIRK¹, THOMAS KITCHING¹⁵, JEAN-PAUL KNEIB⁸, KONRAD KUIJKEN¹⁶, DAVID LAGATUTTA¹⁷, RACHEL MANDELBAUM¹⁸,
RICHARD MASSEY⁵, YANNICK MELLIER¹⁹, BABACK MOGHADDAM^{4,5}, YASSIR MOUDDEN⁶, REIKO NAKAJIMA⁷, STEPHANE
PAULIN-HENRIKSSON⁶, SANDRINE PIRES⁶, ANAIS RASSAT⁶, ALEXANDRE REFREGIER⁶, JASON RHODES^{4,5},
TIM SCHRABBACK¹⁶, ELISABETTA SEMBOLONI⁹, MARINA SHMAKOVA³, LUDOVIC VAN WAERBEKE¹², DUGAN WITHERICK¹, LISA VOIGT¹, AND DAVID WITTMAN¹⁷.

 ¹University College London, ²University of Hong Kong, ³Stanford Linear Accelerator Center, ⁴Jet Propulsion Laboratory, ⁵California Institute of Technology, ⁶Commissariat a l'Energie Atomique, Saclay, ⁷University of Pennsylvania, ⁸Laboratoire dAstrophysique de Marseille, ⁹University of Bonn, ¹⁰Ohio State University, ¹¹Royal Observatory, University of Edinburgh, ¹²University of British Columbia, ¹³Harvard University, ¹⁴University of Victoria, ¹⁵University of Oxford, ¹⁶University of Leiden, ¹⁷University of California, Davis, ¹⁸Institute for Advanced Study, Princeton and ¹⁹Institut d'Astrophysique de Paris

Atmosphere and Telescope

Convolution with kernel

Real data: Kernel size ~ Galaxy size

Pixelisation

Sum light in each square

Real data: Pixel size ~ Kernel size /2

Noise

Mostly Poisson. Some Gaussian and bad pixels. Uncertainty on total light ~ 5 per cent

The Forward Process.

Galaxies: Intrinsic galaxy shapes to measured image:

Intrinsic galaxy (shape unknown)

Gravitational lensing causes a **shear (g)**

Atmosphere and telescope cause a convolution

Detectors measure a pixelated image

Image also contains noise

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Typical galaxy used for cosmic shear analysis Typical star Used for finding Convolution kernel

A full weak lensing pipeline:

The broader context typical for cosmological measurements

	True shears provided	Blind competition
Low noise	GREAT08 LowNoise-Known	GREAT08 LowNoise-Blind
Realistic noise	GREAT08 RealNoise-Known	GREAT08 RealNoise-Blind

One galaxy per image Kernel is given One shear per set Noise is Poisson

	True shears provided	Blind competition
Low noise	GREAT08 LowNoise-Known	GREAT08 LowNoise-Blind
Realistic noise	GREA108 RealNoise-Known	GREAT08 RealNoise-Blind

150 000 galaxies

One galaxy per image Kernel is given One shear per set Noise is Poisson

	True shears provided	Blind competition
Low noise	GREAT08 LowNoise-Known	GREAT08 LowNoise-Blind
Realistic noise	GRE/1108 RealNoise-Known	GREAT08 RealNoise-Blind

150 000 galaxies

3 000 000 galaxies

One galaxy per image Kernel is given One shear per set Noise is Poisson

All divided into sets containing 10 000 galaxies each

	True shears provided	Blind competition
Low noise	GREAT08 LowNoise-Known	GREAT08 LowNoise-Blind
Realistic noise	GREAT08 RealNoise-Known	GREAT08 RealNoise-Blind

	True shears	provided	Blind competition
Low noise	GREAT08 Low	Noise-Known	GREAT08 LowNoise-Blind
Realistic noise	GREAT08 Real	Noise-Known	GREAT08 RealNoise-Blind

Name	Method	Q	Error	Number of	Date of Last
			Flag	Submissions	Submission
A. Einstein	BestLets	1001	-	15	25 Dec 2008
Team Bloggs	Joe1	582	Warning	2	2 Nov 2008
Dr. Socrates	ArcheoShapes	116	Warning	212	23 Sept 2008
W. Lenser [*]	KSB+++	99	-	12	$10 \mathrm{Aug} 2008$
A. Monkey	Guess Again	1.2	Warning	5	30 Nov 2008

Name	Method	Q	Error	Number of	Date of Last
			Flag	Submissions	Submission
A. Einstein	BestLets	1001	-	15	25 Dec 2008
Team Bloggs	Joe1	582	Warning	2	$2~{\rm Nov}~2008$
Dr. Socrates	ArcheoShapes	116	Warning	212	23 Sept 2008
W. Lenser [*]	KSB+++	99	-	12	$10 \mathrm{Aug} \ 2008$
A. Monkey	Guess Again	1.2	Warning	5	30 Nov 2008

Name	Method	Q	Error	Number of	Date of Last
			Flag	Submissions	Submission
A. Einstein	BestLets	1001	-	15	25 Dec 2008
Team Bloggs	Joe1	582	Warning	2	$2~{\rm Nov}~2008$
Dr. Socrates	ArcheoShapes	116	Warning	212	23 Sept 2008
W. Lenser *	KSB+++	99	-	12	$10 \mathrm{Aug} \ 2008$
A. Monkey	Guess Again	1.2	Warning	5	30 Nov 2008

$$Q = \frac{10^{-4}}{\langle (\langle g_{ij}^m - g_{ij}^t \rangle_{j \in k})^2 \rangle_{ik}}$$

Name	Method	Q	Error	Number of	Date of Last
			Flag	Submissions	Submission
A. Einstein	BestLets	1001	-	15	25 Dec 2008
Team Bloggs	Joe1	582	Warning	2	$2~{\rm Nov}~2008$
Dr. Socrates	ArcheoShapes	116	Warning	212	23 Sept 2008
W. Lenser *	KSB+++	99	-	12	$10 \mathrm{Aug} \ 2008$
A. Monkey	Guess Again	1.2	Warning	5	30 Nov 2008

$$Q = \frac{10^{-4}}{\langle (\langle g_{ij}^m - g_{ij}^t \rangle_{j \in k})^2 \rangle_{ik}}$$

Name	Method	Q	Error	Number of	Date of Last
			Flag	Submissions	Submission
A. Einstein	BestLets	1001	-	15	25 Dec 2008
Team Bloggs	Joe1	582	Warning	2	2 Nov 2008
Dr. Socrates	ArcheoShapes	116	Warning	212	23 Sept 2008
W. Lenser *	KSB+++	99	-	12	$10 \mathrm{Aug} \ 2008$
A. Monkey	Guess Again	1.2	Warning	5	30 Nov 2008

$$Q = \frac{10^{-4}}{\langle (\langle g_{ij}^m - g_{ij}^t \rangle_{j \in k})^2 \rangle_{ik}}$$

GREAT08 Timeline

- Feb 2008 GREAT08 Handbook public
- Jun 2008 Internal release of simulations
- Aug 2008 First simulations public
- Oct 2008 Launch of public challenge
- Leaderboard starts containing internal results
- 5 Jan 2009 mid-term workshop at UCL
- 30 Apr 2009 Competition deadline
- June 2008 Workshop; Release final report
- Input shears public

Dark Matter/Dark Energy iCosmo

- Euclid
- GREAT08