Lecture II

Different contributors to CE Stellar yields

Low and intermediate- mass stars: 0.8 - 8 Mo

Long time-scales 30 Myr - several Gyr

³He, ⁷Li C, N, ⁴He, Heavy s-process elements

Death:

- > C-O white dwarfs, when single
- > Type Ia SNe when binaries (some)

Long time-scales 30 Myr - several Gyr

Mainly Iron (some S, Si, Ar, Ca)

Double Degenerate scenario Single Degenerate scenario

Type Ia SN progenitors

- Single-degenerate scenario (Whelan & Iben 1974; Han & Podsiadlowsky 2004) : a binary system with a C-O white dwarf plus a MS star. When the star becomes RG it starts accreting mass onto the WD. When the WD reaches the Chandrasekhar mass it explodes by C-deflagration as Type Ia supernova
 - Double-Degenerate scenario (Iben & Tutukov, 1984) : two C-O WDs merge after loosing angular momentum due to gravitational wave radiation. When the two WDs of 0.7 Mo merge, the Chandrasekhar mass is reached and C-deflagration occurs.

The nucleosynthesis is similar in the two scenarios, but models uncertain!

Eta Carina

Massive stars - M > 8-10 Mo

Short time-scales 3-30 Myr

Mainly alphas (e.g. O), some Fe, light s-process elements, and r-process elements

Neutron star

Death:

- Core collapse SNe
- Leave a Neutron stars or Black hole

Cassiopeia A - 300-year-old remnant of SN IR Spitzer (red) + Optical Hubble (yellow) + Xray Chandra (green and blue)

Type II SNe: Core collapse of massive stars (M=8-40 M^O)

Type Ib/c SNe: Core collapse SNe from more massive progenitors (linked to gamma-ray bursts)

Comparison of the contribution of SNIa x SNII in M^(weighted by Salpeter IMF - 10-50 M⁽⁾)

Element	SNIa (W7)	SNII (TNH95)
С	0.048	0.057
0	0.148	1.777
Ne	0.005	0.232
Mg	0.009	0.118
Si	0.153	0.133
S	0.086	0.040
Fe	0.744	0.121

+ Low and Intermediate Single mass stars

Table from Matteucci 2001

SNIa make 60% of the Fe in the Sun

Core Collapse SNe (II+Ibc) = 5 x SNIa in Sbc Galaxy (MW). But each SNIa produces ~7 times more Fe than a CCSN

Rotation: increases C & N production at low Z

Open squares: MM02 with $V_{rot}=0$ km/s Filled squares: MM02 with $V_{rot}=300$ km/s

Chiappini, Matteucci, Meynet 2003 (MM02=Meynet&Maeder 2002; vHG97=van den Hoek & Groeneweegen 1997)

Lecture II

Simple Chemical Evolution Models

(analytical solutions)

Time evolution of the mass fraction of element *i* in the gas of a galaxy

A = Accretion rate $dM_{tot}/dt = A(t) - W(t)$ W = outflow rate - Winds+ A(t) - W(t) $dM_{o}/dt = -\psi(t)$ E(t) $M_{tot} = M_g + M_s$ Gas restored by Gas consumed the stars back to form stars into the ISM $d(X_iM_g)/dt = -\psi(t)X_i(t) + E_i(t) - X_{iA}A_i(t) - X_iW_i(t)$ For *i*: $\Sigma X_i(t) = 1$ Usually $W_i(t) = 0$ for MW disk, $W_i(t) \neq 0$ for dSph and Es w_i is a constant describing the $W_i(t) = W_i \psi(t)$ efficienty of the galactic wind Often infall is assumed to be exponential with a characteristic timescale $A(t) = a e^{-t/\tau}$ And primordial composition τ can be a function of R - galactocentric distance

Analytical Solutions: The close box model + I.R.A.

 $M_{gas}(0) = M_{tot}$; A(t)=W(t)=0

 $\mu = M_{gas}/M_{tot}$

$$dX_i M_g/dt = -X_i \psi(t) + E_i(t)$$

$$E_i(t) = \int_{M_t}^{M_U} (m - C_m) X_i(t - \tau_m) + Y_i \psi(t - \tau_m) \phi(m) dm$$

+ Instantaneous Recycling Approximation
Stars with m > 1M^O die instantaneously
Stars with m < 1M^O live forever and do not contribute to CE

$$(t-\tau_{m}) \rightarrow t \quad I.R.A \text{ neglects the stellar lifetimes!} \qquad M_{U}$$

$$E_{i}(t) = \psi(t) R X_{i}(t) + y_{i} (1-R) \psi(t) \qquad R = \int (m - Cm) \phi(m) dm$$

$$M_{t} = 1M \Theta$$
where
$$y_{i} = [1/(1-R)] \int Y_{i}(m) \phi(m) dm$$

 y_i = is the newly amount of an element *i* (for example, Z) created by a stellar generation, per unit mass locked into "eternal" objects = TRUE YIELD

The close box + IRA equation:

 $dX_{i}M_{g}/dt = -X_{i}(t) \psi(t) + \psi(t) X_{i} R(t) + y_{i} (1-R) \psi(t)$

Has the analytical solution:

 $X_i - X_i(0) = y_i \ln(1/\mu)$ where $\mu = M_{gas}/M_{tot}$ is the gas fraction

If for a given system we know X_i and μ we can use the equation above to estimate the yield. In this case:

 $p_i = X_i/\ln(1/\mu) = EFFECTIVE YIELD$ $p_i \longrightarrow y_i$ when close box + I. R. A is a good approximation

A simple case: $\psi(t) = v M_{gas}$ and $M_g(0)=M_{tot}$ $dM_{gas}/dt = -\psi(t) + E(t)$, with $E(t) = \psi(t) R$ Solution: $M_{gas} = M_{tot} e^{-v(1-R)t}$ and $X_i - X_{i,0} = y_i v$ (1-R) t Metallicity roughly proportional to time

"I.R.A. is not a good approximation in the case of elements such as iron, nitrogen, s-process and carbon which come partly or wholly from lower-mass stars with significant evolutionary time-scales of the order of a Gyr." Pagel 1997

For the metallicity Z: Close box model with I.R.A:

 $Z = y_z \ln(1/\mu)$ where Z(0)=0

This is the metallicity Z in the gas and/or young stars

Other simple cases with Infall or Outflow (with I.R.A.):

Allowing for Infall:

 $A_i(t) = (1-R)\psi(t)$ Extreme Infall case: constant gas mass

 $X_i - X_{i,0} = y_i [1 - e^{(1 - 1/\mu)}]$

Allowing for outflow: $W_i(t) = w \psi(t)$ Outflow proportional to the SFR

 $X_i - X_{i,0} = [y_i/(1+w)] \ln(1/\mu)$

Primary vs. Secondary elements

Primary element: an element produced directly from H and He. Typical primary element: carbon or oxygen

Secondary element: an element produced from metals already present in the star at birth. Typical secondary: nitrogen

✓ For any two primary elements X_i and X_j we have: $X_i/X_j = y_i/y_j = constant$

✓ For a secondary element X_s formed from a seed element X_p X_s/X_p is proportional to X_p → X_s is proportional to $(X_p)^2$

Pettini et al. 2008

The Time-Delay Idea Abundance ratios as Cosmic Clocks

Fe comes both from SNII and SNIa, whereas O comes from SNII

[O/Fe] vs. [Fe/H] in different galaxies

□ SF EFFICIENCY: Determines which metallicity can be achieved before SNIa and LIMS have time to enrich the ISM

□ INFALL: Replenishment of gas reservoir, allowing stars to continue to form. In this case massive stars keep contributing to the chemical enrichment (together with LIMS and SNIa)

□ OUFLOW: Expulsion of gas that can lead to a halt of the Star Formation -> no contribution from massive stars anymore, contribution only from SNIa and LIMS formed before the SFR stopped.

[O/Fe] vs. [Fe/H] in different galaxies

Squares: dSph stars

Dots: Identifications of different galactic components using kinematic probabilities from velocity ellipsoids: thin disk + thick disk + halo + retrograde component

