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Context and objectives

The Doppler measurement consists in determining the wavelength of an identified spectral line and
comparing it with the theoretical value it would have when transferred into the solar system’s rest
frame. The Doppler equation links the measurement to the theoretical wavelength via the relative
velocity vector, finally delivering the projection of this vector in the direction of the line of sight
(radial velocity). In order to increase the precision, the average over several thousands of spectral
lines is computed. It should be noted, however, that the radial-velocity measurement is affected by
several potential error sources that have been discussed extensively?37.8. The main error sources
are: photon noise3?, instrumental errors237, spectrograph illumination effects!%11, spectral
contamination’12, and stellar ‘noise’13-27, commonly referred to as stellar jitter. The term stellar
jitter masks various stellar causes that produce radial-velocity effects at all time scales and of
different magnitude. The discussion of all these effects lies again beyond the purpose of our review.
Nevertheless, it shall be reminded that stellar jitter is probably the strongest limitations for
Doppler velocimetry when aiming at sub-meter-per-second precision.

Present and future Doppler spectrographs will have to address the mentioned limitations. As a first
step it will be necessary to increase the telescope size, since high spectral resolution measurements
are photon-starved, even for relatively bright targets. The gain obtained with a large telescope is
however easily lost if spectral resolution is low. In fact, for unresolved spectral lines, the
measurement precision increases significantly with increasing the spectral resolution®. In the
photon-noise limited regime the error epvary on the line-centre measurement can be estimated to
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where o is the measured width of the spectral line as seen through the spectrograph, ¢ = (Imin -
Ip)/Iy is the measured line contrast and EW = o c the equivalent width. Ip and Inin designate the
photoelectron counts per resolution element in the continuum and the line minimum, respectively.
[t must be noted that the resolution element can be represented either by the detector pixel or the
wavelength unit as long as all the parameters are expressed in the same units. It is commonly
agreed nowadays that a spectral resolution of at least R:=A1/AA = 100,000 should be used in order to
guarantee the best precision on slowly-rotating, quiet, solar-type stars. Spectral resolution and
adequate line sampling not only allow us to achieve better signal-to-noise per spectral line, but also
to reduce possible instrumental errors in both the radial-velocity measurement and the calibration
process. To first order, instrumental errors scale with the size of the resolution element (expressed
in wavelength units). Unfortunately, with increasing telescope size, spectral resolution is a



considerable cost driver. For seeing-limited instruments the optical etendue E (E = A4 x (), i.e. the
beam cross-section area times the solid angle) increases with the telescope size, and so does the
instrument size if the spectral resolution is kept fixed®. In the era of 8-m class and extremely-large
telescopes (ELTs), this aspect has become a technical and managerial challenge that is nevertheless
successfully addressed by employing novel optical design concepts.

All the future projects for radial-velocity spectrographs aim at detecting rocky planets in the
habitable zone (HZ)?° of a solar-like and low-mass star (a distance to the star at which liquid water
can persist on the surface of the planet). In order to attain this objective they must be photon-
efficient and precise to the sub meter-per-second level. Photon efficiency is obtained with
optimized designs and high spectral resolution. High precision requires also the control of all
instrumental effects. It has therefore become state-of-the-art to design stable instruments?28.
Gravity invariance and illumination stability of the spectrograph are critical aspects that can only
be obtained through a fibre feed3031, Despite the intrinsic light scrambling properties of optical
fibres32-34 it was soon realised that the illumination produced by a circular optical fibre depends on
how the star is fed into the fibre. In other words, motions of the stellar image at the fibre entrance
would produce a change in the illumination of the spectrograph and mimic a radial velocity effect. A
considerable effort was invested in improving image scrambling by employing double
scramblers324 and octagonal fibres3>3¢, Effective improvements have already been demonstrated
on operational instruments37:38,

Any kind of effect that introduces a distortion or a shift of the spectral line in the detector-pixel
space will be interpreted, if not perfectly monitored, as a wavelength change and thus a Doppler
shift’. Two methods of tracking the instrumental-profile changes have successfully been applied in
the past: The first is to superimpose an absorption spectrum of a reference gas cell1339 on the
stellar spectrum, such that the instrumental profile (IP) is continuously measured. The so-called
self-calibration technique is particularly useful and effective in spectrographs with varying
instrument profile, as in the case of slit spectrographs. The disadvantage of this technique is the
restricted bandwidth of the gas-cell spectrum, the loss of efficiency due to absorption in the light
path, and the necessity for a sophisticated de-convolution process in order to recover the stellar
spectrum and thus the radial velocity. This latter step requires the introduction of many additional
parameters for spectral modelling. In order to obtain a given precision higher signal-to-noise
spectra must be acquired. The second method, the so-called simultaneous reference technique#>, is
conceptually opposite. It assumes a stabilized IP that does not change between two wavelength-
calibrations of the spectrograph, such that the determined relation between the detector pixel and
the wavelength remains valid over these time scales (typically a night). A second channel carrying a
spectral reference is continuously fed to the spectrograph to monitor and correct for potential
instrumental drifts or [P changes. It must be guaranteed, however, that the changes suffered by the
scientific and the reference channels are identical over timescales of one observing night. Therefore,
the whole design of the instrument must be optimized for stability, requesting fibre feed and light
scrambling, as well as pressure, mechanical, thermal and optical stability. The effort is compensated
by an unrestricted spectral bandwidth and the acquisition of an ‘uncontaminated’ scientific
spectrum.

Although, in the case of the self-calibration technique, the instrument profile is supposed to be
recoverable by de-convolution, there seems to be general agreement on the fact that low-order
instrument-profile changes must be avoided in any case and that a stable instrument will

eventually deliver more precise measurements. There is also agreement on the need for better
calibration sources. The laser-frequency comb*%-45, when available at full potential, will provide the
aimed calibration accuracy and precision. In the meantime, alternative sources are being developed,
as for example passive Fabry-Pérot cavities*-48 for simultaneous reference, or actively stabilized
Fabry-Pérot systems for wavelength calibration#°.



Tasks

The execution of the following sequence of tasks is proposed for the master thesis. It should be
noted that tasks 3 to 5 can be discussed with Federica Cersullo, who has already executed part of it.
[t is important to understand the results, do the own program to reproduce the results, and modify
whenever needed. The duration of execution of these tasks should be kept as sort as possible,
however. Finally, it should be noted that the sequence below is given as a reference. It can and must
be adapted in a interactive discussion with the director.

1. Study the literature related to the theory of Fabry-Pérot Etalon and wavelength referencing.
(ALL)

2. Describe the transmittance function of a theoretical and a ‘real’ Fabry-Pérot etalon as a
function of wavelength and considering the finite fiber diameter (angular units), surface
quality, and coating reflection. (Pepe, Cersullo)

3. Understand the evolution of the Finesse as a function of fiber diameter (angular units) and
departure from the perfect alignment on the optical axis (angular units). (Cersullo)

4. Compare real data obtained with HARPS and HARPS-N to the theoretical data and discuss
differences. (Pepe)

5. Plot the effective (measured equivalent) Etalon Gap (spacing) as a function of wavelength
using the wavelength calibration delivered by the thorium calibration. (Cersullo, Chazelas)

6. Propose a concept for referencing the existing Fabry-Pérot etalon to a gas cell. The
development kit proposed by Thorlabs shall be integrated in the concept. Propose also an
optical layout. (Wildi)

7. Order the essential components. (Wildi)

8. Characterize the ESPRESSO Fabry-Pérot étalon with the optical spectrum analyzer and
compare the performances to the theoretical values. Discuss possible changes and
improvement in view of a referencing or stabilization. (Cersullo, Pepe)

9. Prepare the laboratory set up, install and test components. (Wildi)

10. Measure the relative changes of the Fabry-Pérot spectrum to the reference spectrum and
chacaterize the measurement precision and typical frequencies. (Wildi, Pepe)

11. Propose, if possible, a concept for active stabilization. (Wildi)

Master thesis manuscript

The master thesis manuscript must be concise but contain essential and complete information
concerning the Master thesis work. It is not intended to review the whole domain of exoplanets,
although an introduction will be appreciated. More important, however, is a description of the
context and the objectives for this work. A possible table of contents could be:

Introduction (to the field)

Objectives and context (of the master thesis)

Theory of the Fabry-Pérot etalon

Laboratory characterization of the ESPRESSO etalon
Concept for precisely referencing a low-Finesse etalon
Laboratory setup and tests of the referencing system
Results and summary
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A few personal suggestions for the manuscript:

- Sometimes less is more. It is more important to be precise than extensive.

- Plots are fundamental. In order to be useful, however, they have to be thought though in
terms of ‘what do [ want to show’. Make sure the plot axis are clear and the unit correct and
meaningfull. Label and axis must be easily readable. The caption must contain (all but only)
the description of what is seen on the plot. The discussion is made in the text.

- Start very soon with filling the manuscript with text, do not wait the master thesis to be
finished to start writing. As soon as you have something to write, put it directly in your draft
manuscript such that information won’t be lost.

We wish you all the best. Francois and Francesco
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