Millimeter observations

- Interest to observe at mm wavelengths
- Instrument basics
- Observing techniques
- Current millimeter facilities
- ALMA
- Science with ALMA

Interest to observe at mm wavelengths

visible

Star: 3000-100'000 K Ionized gas: 10'000K

millimeter

Cold matter: 3-70 K Dust and molecules

- Peak of black body emission:
 - λ = hc/3kT = 0.48/T cm \rightarrow T = 3 K, λ = 1 mm T = 10 K, λ = 0.3 mm
- Peak of dust emission:
 λ = hc/(3+β)kT = 0.3/T [cm]
- Typical energies involved in molecular transitions
- SED of galaxies
- SZ effect

Examples (1)

Black body emission: cosmic microwave background radiation

Examples (2)

Diffuse cloud properties: $n = 10-10^3 \text{ cm}^{-3}$ T = 20-100 K $A_V < 1$

Examples (3)

Typical energies involved in molecular transitions: molecular low-energy rotational transitions lie at mm wavelengths

Examples (3)

Presently, more than 140 molecular species have been detected in the ISM:

Hydrogen Compounds

			4	
H_2	HD	H ₃ ⁺	H_2D^{+}	

Hydrogen and Carbon Compounds

<u>CH</u>	CH ⁺	C_2	CH ₂	C ₂ H	*C3
CH ₃	C_2H_2	C ₃ H(lin)	c-C ₃ H	*CH ₄	C ₄
c-C ₃ H ₂	H ₂ CCC(lin)	C ₄ H	*C ₅	*C ₂ H ₄	C ₅ H
H ₂ C ₄ (lin)	*HC ₄ H	CH ₃ C ₂ H	C ₆ H	*HC ₆ H	H ₂ C ₆
*C ₇ H	CH ₃ C ₄ H	C ₈ H	*C ₆ H ₆		

Hydrogen, Carbon (possibly) and Oxygen Compounds

<u>OH</u>	<u>CO</u>	<i>CO</i> ⁺	H ₂ O	НСО	HCO ⁺
HOC ⁺	C ₂ O	CO ₂	H_3O^+	HOCO ⁺	H ₂ CO
C ₃ O	CH ₂ CO	HCOOH	H ₂ COH ⁺	CH ₃ OH	CH ₂ CHO
CH ₂ CHOH	CH ₂ CHCHO	HC ₂ CHO	C ₅ O	CH ₃ CHO	c-C ₂ H ₄ O
CH ₃ OCHO	CH ₂ OHCHO	CH ₃ COOH	CH ₃ OCH ₃	CH ₃ CH ₂ OH	CH ₃ CH ₂ CHO
(CH ₃) ₂ CO	HOCH ₂ CH ₂ OH	C ₂ H ₅ OCH ₃	(CH ₂ OH) ₂ CO	CH ₃ CONH ₂	

Hydrogen, Carbon (possibly) and Nitrogen Compounds

NH	CN	N_2	NH ₂	HCN	HNC
N_2H^+	NH3	HCNH⁺	H ₂ CN	HCCN	C ₃ N
CH ₂ CN	CH ₂ NH	HC ₂ CN	HC ₂ NC	NH ₂ CN	C ₃ NH
CH ₃ CN	CH ₃ NC	HC_3NH^+	*HC ₄ N	C ₅ N	CH ₃ NH ₂
CH ₂ CHCN	HC ₅ N	CH_3C_3N	CH ₃ CH ₂ CN	HC ₇ N	CH ₃ C ₅ N?
HC ₉ N	HC ₁₁ N				

Examples (4)

M82 in the radio, mm, sub-mm and FIR

mm domain in the electromagnetic spectrum

0.3-10 mm 🛱 30-950 GHz

mm domain in the electromagnetic spectrum

Extremely sensitive to the quantity of water vapor in the atmosphere: illustration of the atmospheric transmission at the most common atmospheric windows exploited by the current instruments

even worse at higher frequencies...

Site constraint:

high altitude to reduce the atmospheric water vapor absorption

Instrument basics

mm studies fully benefit from the advantages of radio astronomy:

- 1) high SENSITIVITY with large collecting areas
- 2) high ANGULAR RESOLUTION with large physical dimensions (~0.2" at 1 mm)
 - → achieved with interferometry

3) high SPECTRAL RESOLUTION with heterodyne techniques (~ 10 m/s)

The spectral energy distribution of the radiation of a black body is given by the Planck law:

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}$$

$$h\nu \ll kT$$

$$B_{\rm RJ}(\nu, T) = \frac{2\nu^2}{c^2}kT$$
Rayleigh-Jeans law

The total flux density of a source integrated over the total solid angle is:

 $S_{\nu} = \int B_{\rm RJ}(\nu, T) d\Omega \qquad \longrightarrow \qquad S_{\nu} = \frac{2 \, k \, \nu^2}{c^2} T_{\rm b} \, \Delta\Omega$

For a Gaussian source:

$$\left[\frac{S_{\nu}}{\mathrm{Jy}}\right] = 0.0736 T_{\mathrm{b}} \left[\frac{\theta}{\mathrm{arc\,seconds}}\right]^{2} \left[\frac{\lambda}{\mathrm{mm}}\right]^{-2}$$

with S_v in 10⁻²⁶ W m⁻² Hz⁻¹ = 1 Jy θ = source size T_b = brightness temperature in K

The brightness temperature, $T_{\rm b}$, of the source is not what we measure:

This leads to a jungle of temperature quantities in use:

Physical quantities:

 S_v = flux density T_b = brightness temperature Antenna dependent quantities:

 T_{mb} = main beam brightness temperature

 T_A = antenna temperature through the atmosphere

 T_A ' = antenna temperature outside the atmosphere

 T_A^* = corrected antenna temperature or forward beam brightness temperature

Relations between these temperatures:

Examples ...

Venus, at closest approach has a size of 62". If we measure an antenna temperature, T_A, of 4.2 K with an 8.7' beam, and a beam efficiency of η_B = 0.5, what is the surface temperature of Venus?

$$T_{A} = 4.2K = \eta_{B} \cdot T_{MB} = 0.5 \cdot T_{MB} \qquad \text{so} \quad T_{MB} = 8.6K$$
$$T_{S} \cdot \theta_{S}^{2} = T_{MB} \cdot \left(\theta_{B}^{2} + \theta_{S}^{2}\right)$$
$$T_{S} = 8.6 \cdot \left(\frac{\left(8.7\right)^{2} + \left(\frac{62}{60}\right)^{2}}{\left(\frac{62}{60}\right)^{2}}\right) = 660K$$

In practice the rms is given by:

SINGLE DISH:

$$\frac{\sigma}{T_{\rm sys}} = \frac{1}{\sqrt{\Delta\nu \,\tau}} \qquad (\sigma \, {\rm in} \, {\rm K})$$

with $T_{\rm sys}$ = noise temperature of the entire system that includes noise from receiver, atmosphere, ground and source; Δv = bandwidth; τ = time integration

INTERFEROMETER:
$$\sigma = \frac{2k}{A\eta_{\rm A}\eta_{\rm Q}\eta_{\rm P}} \cdot \frac{T_{\rm SYS}}{\sqrt{N(N-1)BT}} \qquad (\sigma \text{ in K})$$

with *A* = antenna aperture; η_X = different efficiencies; *N* = number of antennas; *B* = bandwidth; *T* = time integration

⇒ The more antennas we have, the higher sensitivity we reach

Instrument basics: ANGULAR RESOLUTION

From diffraction theory:

The angular resolution is

with $k \sim 1$; θ in arcsec; 206 λ in mm; D = diameter of the instrument in m

Still valid when coherently combining the output of several reflectors of diameter *d* << *D* separated by a distance *D*.

Power patterns for different antenna configurations: a) uniformly illuminated single dish aperture \rightarrow main beam b) 2 elements-interferometer with a spacing D \rightarrow fringes c) same as b), but with a spacing 2D \rightarrow the fringe width is halved

⇒ The larger baselines we have, the higher angular resolution we reach

Instrument basics: CALIBRATION

Calibration is mandatory at mm wavelengths due to:

- the atmospheric effects
- the instrumental noise

A few numbers: $\begin{array}{l} T_{\rm A} & \leq 1 \ {\rm K} \\ T_{\rm sky} & \sim 30 \ {\rm K} \ ({\rm at} \ 3 \ {\rm mm}) \\ T_{\rm rx} & \sim 100 \ {\rm K} \end{array}$

At the IRAM 30m telescope:

a cold (liquid nitrogen) and hot load (ambient temperature) is used

Instrument basics: CALIBRATION

Chopper wheel method:

$$V_{amb} = G (T_{amb} + T_{rx})$$

$$V_{sky} = G (T_{sky} + T_{rx})$$

$$V_{ON} = G (T_{sky} + T_{rx} + T_{A})$$

$$V_{OFF} = G (T_{sky} + T_{rx})$$
(*)

$$\Delta V_{cal} = V_{amb} - V_{sky} = G (T_{amb} - T_{sky}) = G (T_{amb} - T_{amb}(1 - e^{-\tau_v})) = G T_{amb} e^{-\tau_v}$$

$$\Delta V_{\rm sig} = V_{\rm ON} - V_{\rm OFF} = G T_{\rm A} = G T_{\rm A}^{*} e^{-\tau_{\rm v}}$$

As a result, the measured antenna temperature is:

$$T_{\rm A}^* \ = \frac{\varDelta V_{\rm sig}}{\varDelta V_{\rm cal}} T_{\rm amb}$$

Observing techniques

Receivers in use at FIR and mm wavelengths:

Observing techniques: Bolometers

MAMBO-2: 117 pixels

Wide-field imagers:

<u>Principle</u>: when a radiation is absorbed by the bolometer material, T varies; this ΔT change is a measure of the intensity of the incident radiation

 T_0

 $G=R^{-1}$

 $T = T_0 + \Delta T$

Current Bolometers:

Instrument	Wavelength (μm)	Field of view (arcmin ²)	Beam (arcsec)	
Herschel- SPIRE	250	4 x 8	17.5	Bandwidth:
ArTéMiS / 12m APEX	200 350 450	1.8 x 1.8 3.2 x 3.2 4.1 x 4.1	4.2 7.3 9.4	Δν ~ 100 GHz
SCUBA-2	450	8 x 8	7.5	
SHARC-2	350	0.9 x 2.5	8.5	
LABOCA	870	11.4'	18.2	
MAMBO-2	1200	4'	11	

Observing techniques: Heterodyne receivers

Heterodyne receiver

Single pixel multi-channel spectrometers:resolution:10 m/s (3 kHz) - 3 km/s (1 MHz)bandwidth:10 MHz - 500 MHz

New heterodyne receivers: e.g., HERA on the IRAM 30m: 9 pixel array VOCABULARY: scans = exposures sub-scans = short exposures (usually 30 s) making up a scan channels = pixels along the "dispersion"

Observing techniques: Strategies

To get read off the atmospheric effects:

Position switching

• Beam switching (tilting of the secondary mirror - Wobbling; Wobbler through 30–120'')

• On-the-fly mapping

• Frequency switching (solely for narrow spectral line observations)

For n on's, spend \sqrt{n} more time on off source

Observing techniques: Strategies

In addition, we need to do focus and pointing of the antenna:

- must be fairly intense sources with known fluxes and positions
- must be small sources compared to the antenna beam
- often used: planets, strong mm emitters, quasars

Do a focus every 4-6 hours Do a pointing every 2-3 hours

Observing techniques: Interferometry

- → As τ_g varies, we sample different source structures
- → The distances between antennas must be arranged to cover the (u,v) plane as quickly as possible

Gridding and sampling in (u,v) plane (u,v) plane \Leftrightarrow image plane

Fourier transforms

Observing techniques: Interferometry

The more antennas we have, the more the efficiently the (u,v) plane will be filled and the more precise the image reconstruction will be !

Observing techniques: Interferometry

A brief guide to the interferometry jargon:

Optical/IR speak	Radio speak
Optical path difference (OPD)	Delay, lag
Differential piston	Delay residual
Beam combiner	Correlator
Strehl ratio	Antenna gain
Background level	System temperature
Fringe tracking	Phase referencing
Telescope	Antenna
Detector	Feed
Point spread function (PSF)	Dirty (or CLEAN) beam
Magnitudes	log (flux density)
Obscure band designations	Confusing band designations

Current millimeter facilities: Single Dish

IRAM 30m telescope (Pico Veleta, Spain), altitude 2900m, surface accuracy 50 μ m

APEX 12m telescope (Chajnantor, Chile), altitude 5100m, surface accuracy 17 μ m

Current millimeter facilities: Bolometers

Current millimeter facilities: Interferometers

CSO, JCMT, SMA (Hawaii), 4300m

50 ANTENNES DANS LE DESERT

ALMA - ATACAMA LARGE MILLIMETER ARRAY

UN PROJET INTERNATIONAL REGROUPANT L'EUROPE, L'AMERIQUE DU NORD (USA, CANADA), LE JAPON ET LE CHILI

EXIGENCES PARTICULIERES SUR L'EMPLACEMENT D'ALMA: BESOIN D'UN SITE TRES ARIDE, EN HAUTE ALTITUDE

OSF Site

(2900 m, 15 km)

CHOIX: PLATEAU DE CHAJNANTOR A 5000 m D'ALTITUDE DANS LE DESERT D'ATACAMA

ALMA

VLT

50 ANTENNES DE 12 m DE DIAMETRE VONT COMPOSER UN SEUL INSTRUMENT

RESEAU COMPACT: 4 ANTENNES DE 12 m + 12 DE 7 m → utile pour couvrir les short-spacings

SURFACE COLLECTRICE: ~ 5600 m² plus la surface collectrice est grande, plus la sensibilité est élevée

SPECIFICATIONS DE CHAQUE ANTENNE: 25 µm rms sur la surface 2" de pointage absolu 0.6" de suivi des cibles

ANTENNES: 3 PROTOTYPES

JAPON	MITSUBISHI	4 x 12 m + 12 x 7 m
AMERIQUE DU NORD	VERTEX	25 x 12 m (→ 32)
EUROPE	ALCATEL	25 x 12 m (→ 32)

LIGNES DE BASE DE L'INTERFEROMETRE: ENTRE 15 m et 16 km

plus les lignes de base sont grandes, plus la résolution angulaire est élevée

SENSIBILITE ET RESOLUTION ANGULAIRE 10-100 MEILLEURES QUE LES TELESCOPES (MILLIMETRIQUES) ACTUELS

1) DECOUVRIR DES GALAXIES A z > 10

origine et formation des galaxies, premières étoiles, premiers métaux

HST DEEP FIELD: détection de nombreuses galaxies à z < 1.5

ALMA DEEP FIELD: pauvre en galaxies à bas redshift et riche en galaxies à z > 1.5

WILL ALMA BE REALLY ABLE TO DETECT MOLECULAR LINE EMISSION AT VERY HIGH z ?

ALMA will not be a survey machine: small FOV \sim 1'

MOLECULAR LINES USEFUL FOR WHAT ? z=6.4 52 51 51.5 (\mathbf{a}) M_{gas} fuel for SF, evolutionary state morphology sizes, mergers vs disks DECLINATION (J2000) 51.0 *M*_{dyn} masses, hierarchical models 50.5 50.0 49.5 LINE OF CHOICE SO FAR AT HIGH z: CO 49.0 11 48 16.80 16.75 16.70 16.65 16.60 16.55 16.50 RIGHT ASCENSION (J2000) WHY? Not because it is the best tracer but because it is the easier to observe

z > 8 SOURCES: ALMA CO DISCOVERY SPACE

[CII] TO THE RESCUE

[CII] is the major cooling line of the ISM ${}^{2}P_{3/2}-{}^{2}P_{1/2}$ fine-structure line; PDR / SF tracer; v = 1900 GHz (158 µm)

[CII] carries high fraction of L_{FIR} :

[CII] TO THE RESCUE

[CII] is the major cooling line of the ISM

2) DETECTER L'EMISSION CO ET CII DES GALAXIES DE TYPE VOIE LACTEE A z = 3 (< 24 h)

masse du gaz moléculaire, cinématique, évolution des galaxies, histoire de la formation stellaire

Seuls les AGNs, starbursts et objets gravitationnellement amplifiés sont détectés à haut redshfit

LES GALAXIES NORMALES SONT 20 - 100 FOIS PLUS FAIBLES

→ signal d'une Voie Lactée à z = 3: 0.01 mJy

3) MILIEU INTERSTELLAIRE DES GALAXIES PROCHES

rôle des poussières froides et du gaz moléculaire dans l'histoire de la formation stellaire, conditions physiques, structures galactiques

4) FORMATION STELLAIRE

effondrement du nuage moléculaire, formation des proto-étoiles, cinématique des disques proto-stellaires, distribution des masses

5) FORMATION DES PLANETES

cinématique des disques proto-planétaires, structure physique et chimique du disque

RESOLUTION ANGULAIRE AVEC ALMA: qqs UA → des distances de 150 pc (distance des nuages de formation stellaire dans le Serpentaire ou la Couronne Australe)

Simulations hydrodynamiques d'une planète géante (1 M_J) dans un disque proto-planétaire; un sillon est formé dans le disque par la matière chassée par la proto-planète

De tels sillons seront résolus avec ALMA

Simulations des observations ALMA à 672 GHz d'un disque à 50 et 100 pc avec une proto-planète de 1 $M_{\rm J}$ orbitant à 5 UA autour d'une étoile de 0.5 M_{\odot}

Carlos Mar PREMIER ACCORD ENTRE L'EUROPE 2007 PREMIERES FRANGES AVEC 2 ANTENNES 1999 ET L'AMERIQUE DU NORD A NEW MEXICO 2003 ACCORD FINAL ENTRE L'EUROPE 2007 PREMIERES ANTENNES AU CHILI ET L'AMERIQUE DU NORD 2003 DEBUT DES TESTS DES 3 PROTOTYPES 2008 INTERFEROMETRIE AVEC 2 ANTENNES D'ANTENNE A NEW MEXICO 2009 INTEGRATION DES ANTENNES ET TESTS 2005 DEBUT DES TRAVAUX A CHAJNANTOR (1 antenne par mois) 2005 DERNIERS TESTS DES 3 PROTOTYPES 2010 EARLY SCIENCE **D'ANTENNE** (début des demandes de temps) 2006 ACCORD SIGNE ENTRE L'EUROPE, 2012 RESEAU COMPLET DES 50 ANTENNES

OPERATIONNEL

L'AMERIQUE DU NORD ET LE JAPON

ALMA TIMELINE