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Semi-conductor detectors

See introduction on semiconductors in previous slides (conduction/
valence bands)

Gamma-ray interaction produces secondary electrons; they
produce electron-hole pairs in the conduction/valence bands

Electric field separates the pairs before recombination, drifting
electrons to anode and holes to cathode. Charge is collected, which
is proportional to energy deposited in detector

Energy required to generate electron-hole pair is €= (14/5)E +C,
where 0.55c< eV

Common detectors made of Ge (e.g., Integral SPI; E=0.74 eV,
£=2.98 eV), Si (e=3.61 eV), CdTe (Integral ISGRI; E=1. 6eV €=4.43
eV)



Bolometer principles

Sensitive to energy
Not sensitive to ‘color’
Suited for almost ANY wavelength

Particularly suited for IR and FIR to sub-mm
(but cooling to mK required)
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CCDs

Charge Coupled Devices invented in the 1970s
Sensitive to light from optical to X-rays

In practice, best use in optical and X-rays
CCDs make use of silicon chips

The CCD consists of (1) a p-type doped silicon
substrate, (2) the charge storage (depletion)
layer, which is covered by (3) a SiO2 insulating
layer; upon this is (4) an array of closely spaced
electrodes, which can be set to pre-defined
voltage value
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Energy of electrons
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Electrons in a lattice do not have discrete
energies. They form energy bands:
*Valence band
*Conduction band

For semi-conductors, the Fermi level is just in
the middle of the conduction and valence
bands. At finite temperature, some electrons
of the valence band can jump into the
conduction band (current noise)

E.(Si)=1.1 eV (IR), E.(Ge)=0.72 eV
E;(C)=5.5 eV (insulator)

Reminder of solid state physics

Conduction Conduction Conduction
Band Band Band
Egap At absolute Some electrons have High
‘ zer0, 0K enarg\]' a(b:we the Farmi Temperature
Fermi |~ ' N S . S
Level )
f(E) KE) : f(E)
Valence Band |~ Valence Band |~ Valence Band |~
o o [=]
No electrons can be above the valence At high temperatures, some electrons
band at 0K, since none have energy can reach the conduction band and
above the Fermi level and there are contribute to electric current.
no available energy states in the band
gap.
: Extra
Conduction Conduction hole
, ener:
Ferm|_....‘.b..b.,‘,,‘,.‘.,‘...,,..,.,.‘., Ieve'gy

level
Extra
electron
energy

levels

..0.0.0000.000.0. oFermi

- - -

N-Type $Type
% 3
D pole ~ Electron

(From http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html)




The pn junction
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Reverse-biased pn junction
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Metal Oxide Semiconductor (MOS) Capacitor
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Front-illuminated CCDs
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The QE can approach 100% . These thinned
CCDs become transparent to near infra-red
light and the red response is poor.
Response can be boosted by the application
of an anti-reflective coating on the thinned
rear-side. These coatings do not work so
well for front-illuminated CCDs due to the
surface bumps created by the surface
electrodes

They have a low Quantum Efficiency
due to the reflection and absorption
of light in the surface electrodes.
Very poor blue response. The
electrode structure prevents the use
of an anti-reflective coating that
would otherwise boost performance.

Courtesy of S. Tulloch



Quantum Efficiency Comparison

The graph below compares the quantum of efficiency of a thick frontside illuminated CCD and a
thin backside illuminated CCD.
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Back-illuminated CCDs
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* Thinner deadlayers = higher low-E QE
* Thinner active region = lower high-E QE

* Increased noise, charge transfer inefficiency =
higher FWHM

From C. Grant, X-ray Astronomy School 2007



Structure of a CCD

The diagram shows a small section (a few pixels) of the image area of a CCD. This pattern is reapeated.

/ Chan@stops to define the columns of the image
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Every third electrode is connected together. Bus wires running down the edge of the chip make the

connection. The channel stops are formed from high concentrations of Boron in the silicon.

Courtesy of S. Tulloch
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Exposure finished, buckets now contain samples of rain.
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Conveyor belt starts turning and transfers buckets. Rain collected on the vertical conveyor
is tipped into buckets on the horizontal conveyor.
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Vertical conveyor stops. Horizontal conveyor starts up and tips each bucket in turn into
the measuring cylinder .

Courtesy of S. Tulloch



After each bucket has been measured, the measuring cylinder
is emptied , ready for the next bucket load.

Courtesv of S. Tulloch
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A new set of empty buckets is set up on the horizontal conveyor and the process
is repeated.
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Eventually all the buckets have been measured, the CCD has been read out.

Courtesy of S. Tulloch



Charge Collection in a CCD.

Photons entering the CCD create electron-hole pairs. The electrons are then attracted towards
the most positive potential in the device where they create ‘charge packets’ . Each packet
corresponds to one pixel
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Charge Transfer in a CCD 1.

In the following few slides, the implementation of the ‘conveyor belts’ as actual electronic
structures is explained.

The charge is moved along these conveyor belts by modulating the voltages on the electrodes
positioned on the surface of the CCD. In the following illustrations, electrodes colour coded red
are held at a positive potential, those coloured black are held at a negative potential.
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Charge Transfer in a CCD 2.

¢2 o -
¢1 o -

B3 o

Time-slice shown in diagram

Courtesy of S. Tulloch



Charge Transfer in a CCD 3.
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Charge Transfer in a CCD 4.
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Charge Transfer in a CCD 5.
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Charge Transfer in a CCD 6.
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Charge Transfer ina CCD 7.
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Charge Transfer in a CCD 8.
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