Diffraction Grating
Handboo

0%

Richardson Grating Laboratory

L SORCTPONIC

Instruments

[ e o o



DIFFRACTION GRATING
HANDBOOK

third edition

Christopher Palmer
Editor

Erwin Loewen
Editor (first edition)

RICHARDSON GRATING LABORATORY
820 Linden Avenue, Rochester, New York 14625 USA
phone: (716) 262-1331, fax: (716) 454-1568

e-mail: gratings@spectronic.com
Web Site: http://www.gratinglab.com

Copyright 1996, Richardson Grating Laboratory
All Rights Reserved

The Richardson Grating Laboratory is a unit of Spectronic Instruments,






I. SPECTROSCOPY AND GRATINGS............ 1
The Diffraction Grating...........cccccvvvnvnnnnnn.. 1
A Brief History of Grating Development ........ 1
The Richardson Grating Laboratory .............., 2

II. THE PHYSICS OF DIFFRACTION

GRATINGS ooy 3
The Grating EQUation.........cccvevveceveeenneenne.. 3
Riffraction Orders.ooormmmanmssmams 5

Existence of Diffraction Orders................. 5

Overlapping of Diffracted Spectra ............. 5
DISPETSION vewssimm i s cros s saieae saais 6

Angular dispersion.......ccccceeceeeevineeeinnnnnn, 6

Lincar diSpersion.......cceeveevviviiiieeervvnnnnnn, 7
Resolving Power, Spectral Resolution,

and Bandpasscevesnmssiimssmmen 7

ResOIVIng DOWEE s mmmnsmavmonsas ssinins 7

Spectral resolution.......cccevveevivvieirrivennen, 8

Bandpass....ccoceeiniiiiiiiiiiiieiiniiiiee, 8

Resolving power vs. resolution................ 9
Focal Length and f/number.......c.ccccvvneennn. 9
Anamorphic Magnification .............cccceoeeeil 10
Free Spectral Range......cccoooveiiiieieceiiecennn.. 10
Energy Distribution (Grating Efficiency) ........ 11
Stray Light...oooeiiiiiiiiecceeiceeeeve, 11

Grating stray lght........oeeiiiiiniiiinneennnn.. 11

Instrumental stray light...............coeee, 11
Signal-to-Noise Ratio (SNR) .......occveviinnennn. 12

IIL. RULED GRATINGS .....coiiiviiiiiieeeeriiiiee 13

Grating Ruling Engines ........ccooeeviieviinnnnnn.., 13
The Michelson engine..........ccoeeeeevnnninen, 13
The Mann engingl..omevesmsassvpermsis 13
The 'B' engine.....ccccccevvvivernveeeeiiivnnnnnnn 13

Thie Ruling Proess isuiiisiiasosvrmmmnsrramsrnnses 14

Varied Line-space (VLS) Gratings ................. 14

IV. INTERFERENCE (HOLOGRAPHIC)

GRATINGS ....ooiiiierirencve e 15
Principle of Manufacture ..............cccvvvieeen. 15

Formation of an interference pattern.......... 15

Formation of the grooves...........ccccovveee. 16
Classification of Interference Gratings............ 16

Single-beam interference.........cooveeeeenee. 16

Double-beam interference...........ooeevvuennnns 16
The Recording Process...ovvveevivreeieeeeeeiieiennins 17
Differences between Ruled and Interference

Grating S e s s 18
Differences in stray light......cccooevieiiinnnen, 18
Differences and limitations
in the groove profile ..................... 18
Limitations in obtainable
PLOOVE fTeqUENCIES covssumrmmammnamin 18

TABLE OF CONTENTS

Differences in the groove patterns............. 19

Differences in the substrate shapes............ 19
Differences in generation time

for master gratings.........ceeeeveeeeninns 19

V. REPLICATED GRATINGS ......covvvvvvirennennn, 21

The:Replication PrOBESS swssvisvwessossavssevirsmis 21

Certified Precision Diffraction Gratings.......... 21

VI. PLANE GRATINGS AND

THEIR MOUNTS iiiiscievisissnsininsinsssssenss 23
Grating Mount Terminology..........coeeevvneenne. 23
Plane /Grating MounlS: seswssmssissossisnios 23

The Czermny-Tumner Monochromator .......... 23

The Ebert-Fastie Monochromator ............. 24

The Monk-Gillieson Monochromator........ 24

The Littrow Mount........ccoeoveevmivinnneane 24

Double Monochromators ..........ceevveevvnennes 25

Triple Monochromators.....c...eeeevvnnneeenns 25

VII. CONCAVE GRATINGS AND

THEIR MOUNTS ...coiiiiiirieciicceeeeene 27
Classification of Grating TypPeS ......cevvuneennnn. 27
Groove PaALETIS:..cuimivmsssrmssssssivisssirssbeses 27
Blankishapesi cowwmmsmmmcsasnanivnmn 27
Classical Concave Grating Imaging............... 28
Nonclassical Concave Grating Imaging .......... 31
Reduction of Aberrations...........ccovvvevivinennnns 32
Concave Grating Mounts........ccceeeeieieeinne 32
Rowland Circle Spectrographs ................. 32
The Wadsworth Spectrograph.................. 33
Flat Field Spectrographs........coovvevvnunninn, 33
Constant-Deviation Monochromators........ 34

VIII. IMAGING PROPERTIES OF GRATING

SYSTEMS .. souussmnsnmmvpmsissmnsvimnvavsa 35
Characterization of Imaging Quality .............. 35
Geometric Raytracing & Spot Diagrams....35
Linespread Calculations..........ccceevunennenn. 36
Instrumental Imaging........cccevevvveeeeriericnnn. 36
Magnification of the entrance aperture ....... 36
Effects of the entrance aperture
diNTENSIONS ceovvisimmmimssnss e 37
Effects of the exit aperture dimensions....... 38

.......................................................... 41
Grating Efficiency and Groove Shape............. 42
Triangular-groove gratings .....covveeveeevanens 43
Sinusoidal-groove gratings...........cveeveuuens 45
The effects of finite conductivity .............. 47
Distribution of Energy by Diffraction Order ....47
Useful Wavelength Range.......ccevcvevinievennnna. 49

Blazing of Ruled Transmission Gratings.........49



Overcoating of Reflection Gratings........ceeu. 49

X. TESTING AND CHARACTERIZATION

OF GRATINGS....cooveiiiiiiiieecceniiin 51
Spectral Defects . cnvmivsisvisssssssrmvseseviss 51
Rowland Ghosts...cocuunsssssmmmsssnmisns 51
Lyman GhostS. ..c.uvvvrueerennereenneeennnens 52
Satellites. uuveerreiiiiini e 52
Efficiency Measurement .........coveevivveninnnnn 52
Foucault Knife-edge Test......cvvvvevneernienrennnnn 53
Direct Wavefront Testing.......cc.ccovvvvvvnnniinns 53
SCALBIEATIBNE .. consomsummmnansns numsmstinsnsisbiizasss 54
XI. SELECTION OF
DISPERSING SYSTEMS.....coccvvneevieeenes 55
Reflection Grating SYStEmMS ....vvvevenvrnrenennnnes 55
Plane reflection grating systems............... 55
Concave reflection grating systems........... 55
Transmission Grating Systems...............cueue 56
Grating Prisms (Grisms) ......coevvvvvneeinnreneenn 56
Grazing Incidence Systems......coevvenviiriennen 57
BT | L T L e — 57

Astronomical Gratings.......covvveveereunennrinnannes 59
Filter Gratings.....swnvvinisssmine 59
Gratings for Electron Microscope
Calibration vesmsssns s 59
Gratings for Laser Tuning.......cocoevveveeneeennne 59
Gratings as Beam Dividers.........cooovvvivnnnnnn. 60
Space-borne Spectrometry......cccccveeeeeeeiennene 60
Special Gratings ..o cvsrsivisessssssian sinise 60
XIII. ADVICE TO GRATING USERS .............. 61
Choosing a Specific Grating ..........eeveereeeen. 61
Care in Handling Gratings ........covvveevinnnenneen. 61
Grating Cleaning ServiCe....ccovevvvreerierrennenns 61
RECOANNE covvvveny v srm iy r i ik s s 62
ADDEATANCE s wusmi s miss s s 62
Ruled gratings .......cveevveeiniininicnenienneinnns, 62
Interference gratings.......coevvevvveeeennennnen. 62
Grating Mounting........ccoveevvvevinnraeneneenenan 62
BIBLIOGRAPHY ..ottt eneenene s 63
REFERENCES ..ot 63

RICHARDSON GRATING LABORATORY
TECHNICAL PUBLICATIONS .............. 64



PREFACE

In July 1995, Life Sciences International
plc of London, England, acquired Spectronic
Instruments, Inc., including the Richardson
Grating Laboratory, from Milton Roy
Company.

Spectronic Instruments is proud to build
upon the heritage of technical excellence
which began when the Laboratory was a unit
of Bausch & Lomb with the production of the
first high-quality grating in 1949. A high-
fidelity replication process was subsequently
developed to make duplicates of the tediously
generated master gratings. This process be-
came the key to converting diffraction grat-
ings from academic curiosities to catalogue
items, which in turn enabled gratings to al-
most completely replace prisms as the optical
dispersing element of choice.

The Diffraction Grating Handbook is
supplemented by the Richardson Grating
Laboratory’s Grating Catalog, which lists the
standard plane and concave gratings
available. If the Catalog does not offer a
diffraction grating which meets your
requirements, please contact us for a listing
of new gratings or a quotation for a custom-
designed grating.

The Richardson Grating Laboratory
remains committed to maintaining its proud
traditions — using the most advanced
technology available to produce high-quality
precision diffraction gratings, and providing
competent technical assistance in the choice
and use of these gratings.

For further information regarding our
diffraction gratings, please contact

RICHARDSON GRATING LABORATORY
Marketing and Sales Department

820 Linden Avenue

Rochester, New York 14625 USA

phone: 716-262-1331
800-654-9955
fax: 716-454-1568
e-mail: gratings@spectronic.com
Web site:  http://www.gratinglab.com
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“It is difficult to point to another single device that has brought more
important experimental information to every field of science than
the diffraction grating. The physicist, the astronomer, the chemist,

the biologist, the metallurgist, all use it as a routine tool of

unsurpassed accuracy and precision, as a detector of atomic species

to determine the characteristics of heavenly bodies and the presence
of atmospheres in the planets, to study the structures of molecules
and atoms, and to obtain a thousand and one items of information

without which modern science would be greatly handicapped.”

- J. Strong , |. Opt. Soc. Am. 50 , 1148-1152 (1960), quoting G. R. Harrison
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SPECTROSCOPY AND GRATINGS

Spectroscopy is the study of electromag-
netic spectra — the wavelength composition of
light — due to atomic and molecular interac-
tions. For many years, spectroscopy has
been important in the study of physics, and it
is now equally important in astronomical,
biological, chemical, metallurgical and other
analytical investigations. The first experi-
mental tests of quantum mechanics involved
verifying predictions regarding the spectrum
of hydrogen with grating spectrometers. In
astrophysics, diffraction gratings provide
clues to the composition of and processes in
stars and planetary atmospheres, as well as
offer clues to the large-scale motions of ob-
jects in the universe. In chemistry, toxicol-
ogy and forensic science, grating-based in-
struments are used to determine the presence
of chemical species in samples.

The diffraction grating is of considerable
importance in spectroscopy, due to its ability
to separate (disperse) polychromatic light into
its constituent monochromatic components.
In recent years, the spectroscopic quality of
diffraction gratings has greatly improved, and
the Richardson Grating Laboratory has been
a leader in this development.

The extremely high precision required of
a modern diffraction grating dictates that the
mechanical dimensions of diamond tools,
ruling engines, and optical recording hard-
ware, as well as their environmental condi-
tions, be controlled to the very limit of that
which is physically possible. Anything less
results in gratings which are ornamental but
have little technical or scientific value. The
challenge to produce precision diffraction
gratings has attracted the attention of some of
the world's most capable scientists and
technicians. Only a few have met with any
appreciable degree of success, each limited
by the technology available.

THE DIFFRACTION GRATING

A diffraction grating is a collection of
reflecting (or transmitting) elements separated
by a distance comparable to the wavelength
of light under study. It may be thought of as
a collection of diffracting elements, such as a

pattern of transparent slits (or apertures) in an
opaque screen, or a collection of reflecting
grooves on a substrate. A reflection grating
consists of a grating superimposed on a re-
flective surface, whereas a transmission
grating consists of a grating superimposed on
a transparent optical surface. An electromag-
netic wave incident on a grating will, upon
diffraction, have its electric field amplitude
(or phase, or both) modified in a predictable
manner.

A BRIEF HISTORY OF GRATING
DEVELOPMENT

The first diffraction grating was made by
an American astronomer, David Rittenhouse,
in 1785, who reported constructing a half-
inch wide grating with fifty-three apertures.
Apparently he developed this prototype no
further, and there is no evidence that he tried
to use it for serious scientific experiments.

In 1821, unaware of the earlier American
report, Joseph von Fraunhofer began his
work on diffraction gratings. His research
was given impetus by his insight into the
value that grating dispersion could have for
what we now call the science of spec-
troscopy. Fraunhofer's persistence resulted
in gratings of sufficient quality to enable him
to measure the absorption lines of the solar
spectrum. He also derived the equations that
govern the dispersive behavior of gratings.
Fraunhofer was interested only in making
gratings for his own experiments, and upon
his death, his equipment disappeared.

By 1850, F. A. Nobert, a Prussian in-
strument maker, began to supply scientists
with gratings far superior to Fraunhofer's.
About 1870, the scene of grating develop-
ment returned to America, where L. M.
Rutherfurd, a New York lawyer with an avid
interest in astronomy, became interested in
gratings.

In just a few years, Rutherfurd learned to
rule reflection gratings in speculum metal that
were larger and better than any Nobert had
made. For the first time, the performance of
diffraction gratings surpassed even that of the



most powerful prisms. Rutherfurd made few
gratings, though, and their uses were limited
due to their high ghost intensities.

Rutherfurd's dedication, impressive as it
was, could not match the tremendous strides
made by H. A. Rowland, professor of
physics at the Johns Hopkins University.
Rowland's work established the grating as
the primary optical element of spectroscopic
technology.

Rowland not only constructed sophisti-
cated ruling engines but also invented the
concave grating, a device of spectacular value
to modern spectroscopists. He continued to
rule gratings until his death in 1901.

After Rowland's great success, others set
out to rule diffraction gratings. With some
success, they sharpened the scientific demand
for gratings. As the advantages of gratings
over prisms and interferometers for spec-
troscopic work became more apparent, the
demand for diffraction gratings far exceeded
the supply.

In 1947, Bausch & Lomb decided to
make precision gratings available commer-
cially for the first time. In 1950, through the
encouragement of George R. Harrison of
MIT, David Richardson and Robert Wiley of
Bausch & Lomb succeeded in producing their
first high quality grating. This was ruled on
a rebuilt engine which had its origins in the
University of Chicago laboratory of Albert A.
Michelson. A high fidelity replication pro-
cess was subsequently developed, which was
crucial to making replicas, duplicates of the
tediously generated master gratings. Since
then, the Richardson Grating Laboratory has
produced thousands of master gratings and
many times that number of high quality
replicas. In 1985, Milton Roy Company
acquired Bausch & Lomb's gratings and
spectrometer operations, and in 1995 sold the
unit to Life Sciences International plc as part
of Spectronic Instruments, Inc. Spectronic
has continued to uphold the traditions of
precision and quality established by Bausch
& Lomb fifty years ago.

A most useful feature of modern gratings
is the availability of an enormous range of
sizes and groove spacings (up to 10800
grooves per millimeter), and their enhanced
quality is now almost taken for granted. In
particular, the control of groove shape (or
blazing) has increased spectral efficiency to
its theoretical limits. In addition, in-

terferometric and servo control systems have
made it possible to break through the accu-
racy barrier previously set by the mechanical
constraints inherent in the lead screws of
ruling engines.

THE RICHARDSON GRATING
LABORATORY

The Richardson Grating Laboratory is a
unique, integrated facility in Rochester, New
York, housing not only the Richardson ruling
engines but the associated testing and
production facilities.

To achieve gratings of the highest
practical resolution, a precision of better than
1 nm (0.001 um) in the spacing of the
grooves must be maintained. Such high pre-
cision requires extreme control over tem-
perature fluctuation and vibration in the ruling
engine environment. This control has been
established at the Laboratory by construction
of an underground grating ruling laboratory
equipped with temperature control to better
that £0.01 °C, and a modern vibration
isolation system that suppresses amplitudes
to less than 0.025 pm. The installation can
maintain reliable control over the important
environmental factors for periods in excess of
six weeks, the time required to rule large,
finely-spaced gratings.

The Richardson Grating Laboratory
contains facilities for coating and testing
master and replica blanks, as well as special
areas for the controlled replication itself. In
order to produce the finest gratings with
maximum control and efficiency, even stor-
age, packing and shipping of finished grat-
ings are part of the same facility.

In addition to mechanically burnishing
gratings with a diamond tool, photographic
recording of an optical interference pattern
can be used to produce gratings. Master
interference gratings require strict mainte-
nance of the recording optical system to
obtain the best contrast and fringe structure.
The Richardson Grating Laboratory produces
interference (holographic) gratings in its dedi-
cated recording facility, in whose controlled
environment thermal gradients and air cur-
rents are minimized and fine particulates are
filtered from the air. These master gratings
are replicated in a process identical to that for
ruled master gratings.



THE PHYSICS OF DIFFRACTION GRATINGS [l

THE GRATING EQUATION

When monochromatic light is incident on
a grating surface, it is diffracted into discrete
directions. We can picture each grating
groove as being a very small, slit-shaped
source of diffracted light. The light diffracted
by each groove combines to form a diffracted
wavefront. The usefulness of a grating
depends on the fact that there exists a unique
set of discrete angles along which, for a
given spacing d between grooves, the
diffracted light from each facet is in phase
with the light diffracted from any other facet,
so they combine constructively.

Diffraction by a grating can be visualized
from the geometry in Figure II-1, which
shows a light ray of wavelength 2 incident at
an angle o and diffracted by a grating (of
groove spacing d) along angles S,,. These
angles are measured from the grating normal,
which is the dashed line perpendicular to the
grating surface at its center. The sign con-
vention for these angles depends on whether
the light is diffracted on the same side or the
opposite side of the grating as the incident
light. In diagram (a), which shows a
reflection grating, the angles a>0and g, >0
(since they are measured counter-clockwise
from the grating normal) while the angles By
< 0 and B_; < 0 (since they are measured
clockwise from the grating normal). Diagram
(b) shows the case for a transmission grating.

By convention, angles of incidence and
diffraction are measured from the grating
normal fo the beam. This is shown by
arrows in the diagrams. In both diagrams,
the sign convention for angles is shown by
the plus and minus symbols located on either
side of the grating normal. For either reflec-
tion or transmission gratings, the algebraic
signs of two angles differ if they are mea-
sured from opposite sides of the grating
normal. Other sign conventions exist, so
care must be taken in calculations to ensure
that results are self-consistent.

Another illustration of grating diffraction,
using wavefronts (surfaces of constant
phase), is shown in Figure II-2. The geo-

(a) grating‘ normal
+ -

incident light |

diffracted light

diffracted
light

(b) gratin% normal
4=

incident light

Figure II-1. Diffraction by a plane grating. A beam
of monochromatic light of wavelength 4 is incident
on a grating and diffracted along several discrete paths.
The triangular grooves come out of the page; the rays
lic in the plane of the page. The sign convention for
the angles « and J is shown by the + and - signs on
cither side of the grating normal. (a) A reflection
grating: the incident and diffracted rays lie on the
same side of the grating. (b) A transmission grating:
the incident and diffracted rays lies on opposite sides
of the grating.



metrical path difference between light from
adjacent grooves is seen to be d sina +
d sinB. [Since B8 < 0, the latter term is actu-
ally negative.] The principle of interference
dictates that only when this difference equals
the wavelength A of the light, or some
integral multiple thereof, will the light from
adjacent grooves be in phase (leading to con-
structive interference). At all other angles S,
there will be some measure of destructive in-
terference between the wavelets originating
from the groove facets.

grating normal
+ -

\\\eel//

incident ﬁ diffracted
wavefront wavefront
dsin 8 dsine
——

Figure 1I-2, Geometry of diffraction, for planar wave-
fronts. The terms in the path difference, & sin and d
sinf3, are shown.

These relationships are expressed by the
grating equation
mA =d (sin + sinfi), (2-1)
which governs the angles of diffraction from
a grating of groove spacing d. Here m is the
diffraction order (or spectral order), which is
an integer. For a particular wavelength 4, all
values of m for which ImA/dl < 2 correspond
to physically realizable diffraction orders. It
is sometimes convenient to write the grating
equation as
GmA = sina + sing, (2-1°)
where G = 1/d is the groove frequency,

groove density or pitch, more commonly
called "grooves per millimeter".

[Eq. (2-1) and its equivalent Eq. (2-1")
are the common forms of the grating equa-
tion, but their validity is restricted to cases in
which the incident and diffracted rays are

perpendicular to the grooves (at the center of
the grating). The vast majority of grating
systems fall within this category, which is
called classical (or in-plane) diffraction. If
the incident light beam is not perpendicular to
the grooves, though, the grating equation
must be modified:

GmA = cose (sin@ + sinff). (2-1")
Here ¢ is the angle between the incident light
path and the plane perpendicular to the
grooves at the grating center (the plane of the
page in Figure II-2). If the incident light lies
in this plane, ¢ = 0 and Eq. (2-1") reduces to
the more familiar Eq. (2-1'). In geometries
for which e # 0, the diffracted spectra lie on a
cone rather than in a plane, so such cases are
termed conical diffraction.]

For a grating of groove spacing d, there
is a purely mathematical relationship between
the wavelength and the angles of incidence
and diffraction. In a given spectral order m,
the different wavelengths of polychromatic
wavefronts incident at angle « are separated
in angle:

B(R) = arcsin(mA/d — sinc). (2-2)
When m = 0, the grating acts as a mirror, and
the wavelengths are not separated (8 = —« for
all A); this is called specular reflection or
simply the zero order.

A special but common case is that in
which the light is diffracted back toward the
direction from which it came (i.e., @ = f§);
this is called the Littrow configuration, for
which the grating equation becomes

mA = 2d sina, in Littrow. (2-3)

In many applications (such as constant-
deviation monochromators), the wavelength
A is changed by rotating the grating about the
axis coincident with its central ruling, with
the directions of incident and diffracted light
remaining unchanged. The deviation angle
2K between the incidence and diffraction
directions (also called the angular deviation)
is

2K = o — B = constant, (2-4)
while the scan angle ¢, which is measured
from the grating normal to the bisector of the
beams, 18



20=0+f. (2-5)

Note that ¢ changes with 4 (as do « and j).
In this case, the grating equation can be ex-
pressed in terms of ¢ and the half deviation
angle K as

mA = 2d cosK sing. (2-6)

This version of the grating equation is useful
for monochromator mounts (see Chapter
VII). Eq. (2-6) shows that the wavelength
diffracted by a grating in a monochromator
mount is directly proportional to the sine of
the angle ¢ through which the grating rotates,
which is the basis for monochromator drives
in which a sine bar rotates the grating to scan
wavelengths (see Figure II-3).

axis of grating rotation
(out of page)

grating

Figure II-3. A sine bar mechanism for wavelength
scanning. As the screw is extended linearly by the
distance x shown, the grating rotates through an angle
¢ in such a way that sin¢ is proportional to x.

DIFFRACTION ORDERS

Existence of Diffraction Orders.
For a particular set of values of the groove
spacing d and the angles « and B, the grating
equation (2-1) is satisfied by more than one
wavelength. In fact, subject to restrictions
discussed below, there may be several dis-
crete wavelengths which, when multiplied by
successive integers m, satisfy the condition
for constructive interference. The physical
significance of this is that the constructive
reinforcement of wavelets diffracted by suc-
cessive grooves merely requires that each ray
be retarded (or advanced) in phase with every
other; this phase difference must therefore
correspond to a real distance (path difference)
which equals an integral multiple of the

wavelength. This happens, for example,
when the path difference is one wavelength,
in which case we speak of the positive first
diffraction order (m = 1) or the negative first
diffraction order (m = -1), depending on
whether the rays are advanced or retarded as
we move from groove to groove. Similarly,
the second order (m = 2) and negative second
order (m = —2) are those for which the path
difference between rays diffracted from adja-
cent grooves equals two wavelengths.

The grating equation reveals that only
those spectral orders for which Imi/dl < 2 can
exist; otherwise, Isina + sinfl > 2, which is
physically meaningless. This restriction pre-
vents light of wavelength 4 from being
diffracted in more than a finite number of
orders. Specular reflection (m = 0) is
always possible; that is, the zero order
always exists (it simply requires = —«). In
most cases, the grating equation allows light
of wavelength 24 to be diffracted into both
negative and positive orders as well.
Explicitly, spectra of all orders m exist for
which

-2d < ml < 2d, m an integer.  (2-7)
For 4/d << 1, a large number of diffracted
orders will exist.

As seen from Eq. (2-1), the distinction
between negative and positive spectral orders
is that

B >-a for positive orders (m > 0),
B < —a for negative orders (m < 0), (2-8)

B =-a for specular reflection (m = 0).

This sign convention for m requires that
m > ( if the diffracted ray lies to the left (the
counter-clockwise side) of the zero order
(m =0), and m < 0 if the diffracted ray lies to
the right (the clockwise side) of the zero
order. This convention is shown graphically
in Figure I1-4.

Overlapping of Diffracted Spectra.
The most troublesome aspect of multiple
order behavior is that successive spectra
overlap, as shown in Figure II-5. It is
evident from the grating equation that, for
any grating instrument configuration, the
light of wavelength A diffracted in the m =1
order will coincide with the light of wave-



length A/2 diffracted in the m = 2 order, etc.,
for all m satisfying inequality (2-7). In this
example, the red light (600 nm) in the first
spectral order will overlap the ultraviolet light

grating normal
+| — m=0

negative
positive orders

orders

Figure II-4. Sign convention for the spectral order m.
In this example ¢ is positive.

grating
normal
m=0 incident
\ \ light
300 200 100
m =+2
nm nm nm
600 400 200
m =+1

nm

nm nm

Figure II-5 - Overlapping of spectral orders. The
light for wavelengths 100, 200 and 300 nm in the
second order is diffracted in the same direction as the
light for wavelengths 200, 400 and 600 nm in the
first order. In this diagram, the light is incident from
the right, so a <0,

(300 nm) in the second order. A detector
sensitive at both wavelengths would see both
simultaneously. This superposition of wave-
lengths, which would lead to ambiguous
spectroscopic data, is inherent in the grating
equation itself and must be prevented by suit-
able filtering (called order sorting), since the
detector cannot generally distinguish between

light of different wavelengths incident on it
(within its range of sensitivity). [See also
FREE SPECTRAL RANGE, below.]

DISPERSION

The primary purpose of a diffraction
grating is to disperse light spatially by wave-
length. A beam of white light incident on a
grating will be separated into its component
colors upon diffraction from the grating, with
each color diffracted along a different direc-
tion. Dispersion is a measure of the separa-
tion (either angular or spatial) between
diffracted light of different wavelengths.
Angular dispersion expresses the spectral
range per unit angle, and linear resolution ex-
presses the spectral range per unit length.

Angular dispersion. The angular
spread dg of a spectrum of order m between
the wavelength A and A + dA can be obtained
by differentiating the grating equation, as-
suming the incidence angle a to be constant.
The change D in diffraction angle per unit
wavelength is therefore

D=%=m—=ﬂscc =Gmsecf, (2-9)
dA dcosB d P P

where fis given by Eq. (2-2). The ratioD =
dp/da is called the angular dispersion. As the
groove frequency G = 1/d increases, the
angular dispersion increases (meaning that
the angular separation between wavelengths
increases for a given order m).

In Eq. (2-9), it is important to realize that
the quantity m/d is not a ratio which may be
chosen independently of other parameters;
substitution of the grating equation into Eq.
(2-9) yields the following general equation
for the angular dispersion:

D= dB _ (sina + sinb'). (2-10)
di A cosf

For a given wavelength, this shows that the
angular dispersion may be considered to be
solely a function of the angles of incidence
and diffraction. This becomes even more
clear when we consider the Littrow configu-
ration (o = B), in which case Eq.
(2-10) reduces to



D= gg:i[,a[]ﬁ,
di A4

in Littrow. (2-11)

When I8l increases from 10° to 63° in Littrow
use, the angular dispersion increases by a
factor of ten, regardless of the spectral order
or wavelength under consideration. Once B
has been determined, the choice must be
made whether a fine-pitch grating (small d)
should be used in a low order, or a course-
pitch grating (large d) such as an echelle
grating should be used in a high order. [The
fine-pitched grating, though, will provide a
larger free spectral range; see below.]

Linear dispersion. For a given
diffracted wavelength 1 in order m (which
corresponds to an angle of diffraction f), the
linear dispersion of a grating system is the
product of the angular dispersion D and the
effective focal length r'(B) of the system:

PO o= B mE secf
dA dcosf d

= Gmr’ secf. (2-12)

The quantity r' dg = d/ is the change in posi-
tion along the spectrum (a real distance,
rather than a wavelength). We have written
r'(B) for the focal length to show explicitly
that it may depend on the diffraction angle j
(which, in turn, depends on A).

The reciprocal linear dispersion, also
called the plate factor P, is more often consid-
ered; it is simply the reciprocal of r' D,
usually measured in nm/mm:

_ dcosf

P 7
mr

(2-12)

P is a measure of the change in wavelength
(in nm) corresponding to a change in location
along the spectrum (in mm). It should be
noted that the terminology plate factor is used
by some authors to represent the quantity
1/sin®, where @ is the angle the spectrum
makes with the line perpendicular to the
diffracted rays (see Figure 1I-6); in order to
avoid confusion, we call the quantity 1/sin®
the obliquity factor. When the image plane
for a particular wavelength is not perpendic-
ular to the diffracted rays (i.e., when & #
90°), P must be multiplied by the obliquity

factor to obtain the correct reciprocal linear
dispersion in the image plane.

plane of spectral image

Figure 11-6. The obliquity angle ®. The spectral
image recorded need not lie in the plane perpendicular
to the diffracted ray (i.e., @ # 90°).

RESOLVING POWER, SPECTRAL
RESOLUTION, AND BANDPASS

Resolving power. The resolving
power R of a grating is a measure of its abil-
ity to separate adjacent spectral lines of aver-
age wavelength A. It is usually expressed as
the dimensionless quantity

R = A/AA. (2-13)

Here AA is the limit of resolution, the differ-
ence in wavelength between two lines of
equal intensity which can be distinguished
(that is, the peaks of two wavelengths 1; and
A7 for which 121 — A2l < A2 will be ambigu-
ous). The theoretical resolving power of a
planar diffraction grating is given in elemen-
tary optics textbooks as

R =mN, (2-14)

where m is the diffraction order and N is the
total number of grooves illuminated on the
surface of the grating. For negative orders
(m < 0), the absolute value of r1is
considered.

A more meaningful expression for R is
derived below. The grating equation can be
used to replace m in Eq. (2-14);

R = Nd (sina + sinf3)/A. (2-15)

If the groove spacing d is uniform over the
surface of the grating, and if the grating blank
is planar, the quantity Nd is simply the ruled
width W of the grating, so



R =W (sina + sinf)/A. (2-16)

As expressed by Eq. (2-16), R is not depen-
dent explicitly on the spectral order or the
number of grooves; these parameters are
contained within the ruled width and the
angles of incidence and diffraction. Since

Isinor + sinfl < 2 (2-17)
the maximum attainable resolving power is
Ryiax = 2W/A, (2-18)

regardless of the order m or number of
grooves N. This maximum condition
corresponds to the grazing Littrow
configuration, i.e., a = B (Littrow), lal = 90°
(grazing).

It is useful to consider the resolving
power as being determined by the maximum
phase retardation of the extreme rays
diffracted from the grating. Measuring the
difference in optical path lengths between the
rays diffracted from opposite sides of the
grating provides the maximum phase
retardation; dividing this quantity by the
wavelength A of the diffracted light gives the
resolving power R.

The degree to which the theoretical
resolving power is attained depends not only
on the angles a and S, but also on the optical
quality of the grating surface, the uniformity
of the groove spacing, the quality of the
associated optics, and the width of the slits
and/or detector elements. Any departure
greater than 4/10 from flatness for a plane
grating, or sphericity for a concave grating,
will result in a loss of resolving power. The
grating groove spacing must be kept constant
to within about 1% of the wavelength at
which theoretical performance is desired.
Experimental details, such as slit width, air
currents, and vibrations can seriously inter-
fere with obtaining optimal results.

The practical resolving power is limited
by the spectral half-width of the lines emitted
by the source. This explains why systems
with revolving powers greater than 500 000
are usually required only in the study of
spectral line shapes, Zeeman effects, and line
shifts, and are not needed for separating indi-
vidual spectral lines.

A convenient test of resolving power is to
examine the isotopic structure of the mercury
emission line at 546.1 nm. Another test for
resolving power is to examine the line profile
generated in a spectrograph or scanning
spectrometer when a single mode laser is
used as the light source. Line width at half
intensity (or other fractions as well) can be
used as the criterion. Unfortunately, resolv-
ing power measurements are the convoluted
result of all optical elements in the system,
including the locations and dimensions of the
entrance and exit slits and the auxiliary lenses
and mirrors, as well as the quality of these
optics. Their effects constitute the instrument
function and are necessarily superimposed on
those of the grating.

Spectral resolution. While resolv-
ing power can be considered a characteristic
of the grating and the angles at which it is
used, the ability to resolve two wavelengths
A1 and A2 = 41 + AA generally depends not
only on the grating but on the dimensions and
locations of the entrance and exit slits (or
detector elements), the aberrations in the
images, and the magnification of the images.
The minimum wavelength difference AA (also
called the limit of resolution, or simply
resolution) between two wavelengths which
can be resolved unambiguously can be
determined by convoluting the image of the
entrance aperture (at the image plane) with the
exit aperture (or detector element). This
measure of the ability of a grating system to
resolve nearby wavelengths is arguably more
relevant than is resolving power, since it
takes into account the image effects of the
system. While resolving power is a dimen-
sionless quantity, resolution has spectral
units (usually nanometers).

Bandpass. The bandpass B of a spec-
troscopic system is the wavelength interval of
the light that passes through the exit slit (or
falls onto a detector element). It is often
defined as the difference in wavelengths
between the points of half-maximum intensity
on either side of an intensity maximum. An
estimate for bandpass is the product of the
exit slit width w’ and the reciprocal linear
dispersion P:

B=w'P. (2-19)



An instrument with smaller bandpass can
resolve wavelengths that are closer together
than an instrument with a larger bandpass.
Bandpass can be reduced by decreasing the
width of the exit slit (to a certain limit; see
Chapter VIII), but usually at the expense of
decreasing light intensity as well.

Bandpass is sometimes called spectral
bandwidth, though some authors assign
distinct meanings to these terms.

Resolving power vs. resolution.
In the literature, the terms resolving power
and resolution are sometimes interchanged.
While the word power has a very specific
meaning (energy per unit time), the phrase
resolving power does not involve power in
this way; as suggested by Hutley, though,
we may think of resolving power as 'ability
to resolve'.

The comments above regarding resolving
power and resolution pertain to planar classi-
cal gratings used in collimated light (plane
waves). The situation is complicated for
gratings on concave substrates or with
groove patterns consisting of unequally
spaced lines, which restrict the usefulness of
the previously defined simple formule,
though they may still yield useful approxima-
tions. Even in these cases, though, the
concept of maximum retardation is still a
useful measure of the resolving power.

FOCAL LENGTH AND f/NUMBER

For gratings (or grating systems) which
image as well as diffract light, or disperse
light which is not collimated, a focal length
may be defined. If the beam diffracted from
a grating of a given wavelength 1 and order
m converges to a focus, then the distance
between this focus and the grating center is
the focal length r'(4). [If the diffracted light
is collimated, and then focused by a mirror or
lens, the focal length is that of the refocusing
mirror or lens and not the distance to the
grating.] If the diffracted light is diverging,
the focal length may still be defined, although
by convention we take it to be negative
(indicating that there is a virtual image behind
the grating). Similarly, the incident light may
diverge toward the grating (so we define the
incidence or entrance slit distance (1) > 0) or
1t may converge toward a focus behind the

grating (for which r(1) <0). Usually grat-
ings are used in configurations for which r
does not depend on wavelength (though in
such cases r' usually depends on A).

In Figure II-7, a typical concave grating
configuration is shown; the monochromatic
incident light (of wavelength 1) diverges
from a point source at A and is diffracted
toward B. Points A and B are distances r and
r’, respectively, from the grating center O. In
this figure, both r and r” are positive.

source point

incident light

GN

image point
diffracted light

Figure II-7. Geometry for focal distances and focal
ratios (f/inumbers). GN is the grating normal
(perpendicular to the grating at its center, O).

Calling the width (or diameter) of the
grating (in the dispersion plane) W allows the
input and output f/inumbers (also called focal
ratios) to be defined:

o B
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Usually the input f/number is matched to the
f/number of the light cone leaving the
entrance optics (e.g., an entrance slit or fiber)
in order to use as much of the grating surface
for diffraction as possible. This increases the
amount of diffracted energy while not over-
filling the grating (which would generally
contribute to stray light).

For oblique incidence or diffraction, Egs.

(2-20) are often modified by replacing W
with the projected width of the grating:

. Jmogyreyr = ﬂ . (2-21)

MONpur = :
J/Oup W cosa W cosf



These equations account for the reduced
width of the grating as seen by the entrance
and exit slits; moving toward oblique angles
(i.e., increasing lal or I8l) decreases the pro-
jected width and therefore increases the
f/number.

The focal length is an important parameter
in the design and specification of grating
spectrometers, since it governs the overall
size of the optical system (unless folding
mirrors are used). The ratio between the
input and output focal lengths determines the
projected width of the entrance slit which
must be matched to the exit slit width or
detector element size. The f/number is also
important, as it is generally true that spectral
aberrations decrease as f/number increases.
Unfortunately, increasing the input f/number
results in the grating subtending a smaller
solid angle as seen from the entrance slit; this
will reduce the amount of light energy the
grating collects and consequently reduce the
intensity of the diffracted beams. This trade-
off prohibits the formulation of a simple rule
for choosing the input and output f/numbers,
so sophisticated design procedures have been
developed to minimize aberrations while
maximizing collected energy. See chapter
VII for a discussion of the imaging properties
and chapter VIII for a description of the effi-
ciency characteristics of grating systems.

ANAMORPHIC MAGNIFICATION

For a given wavelength A, we may con-
sider the ratio of the width of a collimated
diffracted beam to that of a collimated inci-
dent beam to be a measure of the effective
magnification of the grating (see Figure II-8).
From this figure we see that this ratio is

cosf

e (2-22)

b

a
Since « and B depend on A through the grat-
ing equation (2-1), this magnification will
vary with wavelength. The ratio b/a is called
the anamorphic magnification; for a given
wavelength 4, it depends only on the angular
configuration in which the grating is used.

The magnification of an object not located
at infinity (so that the incident rays are not
collimated) is discussed in chapter VIIL
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grating
normal
a
[#4
B b
grating
surface

Figure II-8. Anamorphic magnification. The ratio
of the beam widths b/a equals the anamorphic magni-
fication.

FREE SPECTRAL RANGE

For a given set of incidence and diffrac-
tion angles, the grating equation is satisfied
for a different wavelength for each integral
diffraction order m. Thus light of several
wavelengths (each in a different order) will
be diffracted along the same direction: light of
wavelength 2 in order m is diffracted along
the same direction as light of wavelength /2
in order 2m, etc.

The range of wavelengths in a given
spectral order for which superposition of
light from adjacent orders does not occur is
called the free spectral range F,. Tt can be
calculated directly from its definition: in order
m, the wavelength of light which diffracts
along the direction of A; in order m+1 is 4; +
AA, where

A1+ AA = "”m;l AL, (2-23)

from which

F,=AL=A1/m. (2-24)

The concept of free spectral range applies
to all gratings capable of operation in more
than one diffraction order, but it is
particularly important in the case of echelles,



because they operate in high orders with
correspondingly short free spectral ranges.

Free spectral range and order sorting are
intimately related, since grating systems with
greater free spectral ranges may have less
need for filters (or cross-dispersers) which
absorb or diffract light from overlapping
spectral orders. This is one reason why first-
order applications are widely popular.

ENERGY DISTRIBUTION (GRATING
EFFICIENCY)

The intensity of light of a given wave-
length diffracted by a grating into a given
spectral order depends on many parameters,
including the intensity and polarization of the
incident light, the angles of incidence and
diffraction, the (complex) index of refraction
of the metal (or glass or dielectric) of the
grating, and the groove spacing. A complete
treatment of grating efficiency requires the
vector formalism of electromagnetic theory
(Maxwell's equations), which has been
studied in detail over the past few decades.
While the theory does not yield conclusions
easily, certain rules of thumb can be useful in
making approximate predictions. The topic
of grating efficiency is addressed more fully
in chapter IX.

STRAY LIGHT

All light which reaches the image plane
from anywhere other than the grating, by any
means other than diffraction as governed by
Eq. (2-1), is called stray light. All compo-
nents in an optical system contribute stray
light, as will any baffles, apertures, and par-
tially reflecting surfaces.

Grating stray light. Of the radiation
incident on the surface of a diffraction grat-
ing, some will be diffracted and some will be
absorbed by the grating itself. The remainder
is unwanted energy called grating stray light.
Stray light may arise from several factors,
including imperfections in the shape and
spacing of the grooves and roughness on the
surface of the grating.

Diffuse stray light is scattered into the
hemisphere in front of the grating surface. It
is due mainly to grating surface microrough-
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ness. Itis the primary cause of stray light in
interference gratings. For monochromatic
light incident on a grating, the intensity of
diffuse stray light is higher near the diffrac-
tion orders for that wavelength than between
the diffracted orders. M. C. Hutley (National
Physical Laboratory, United Kingdom)
found this intensity to be proportional to slit
area, and probably proportional to 1/44.

In-plane scatter is unwanted energy in the
dispersion plane. Due primarily to random
variations in the groove spacing or groove
depth, its intensity is directly proportional to
slit area and probably inversely proportional
to the square of the wavelength.

Ghosts are caused by periodic errors in
the groove spacing. Characteristic of ruled
gratings, interference gratings are free from
ghosts when properly made.

Stray light can be reduced greatly through
the use of a double grating spectrometer, in
which light diffracted from one grating is
incident on another.

Instrumental stray light. Stray light
for which the grating cannot be blamed is
called instrumental stray light. Most impor-
tant is the ever-present light reflected into the
zero order, which must be trapped so that it
does not contribute to stray light. Diffraction
from sharp edges and apertures causes light
to propagate along directions other than those
predicted by the grating equation. Reflection
from instrument chamber walls and mounting
hardware also contributes to the redirection of
unwanted energy toward the image plane;
generally, a smaller instrument chamber
presents more significant stray light
problems. Light incident on detector el-
ements may be reflected back toward the
grating and rediffracted; since the angle of
incidence may now be different, light
rediffracted along a given direction will
generally be of a different wavelength than
the light which originally diffracted along the
same direction. Baffles, which trap
diffracted energy outside the spectrum of
interest, are intended to reduce the amount of
light in other orders and in other
wavelengths, but they may themselves
diffract and reflect this light so that it ulti-
mately reaches the image plane.



SIGNAL-TO-NOISE RATIO (SNR)

The signal-to-noise ratio (SNR) is the
ratio of diffracted energy to unwanted light
energy. While we might be tempted to think
that increasing diffraction efficiency will in-
crease SNR, stray light usually plays the
limiting role in the achievable SNR for a
grating system.

Replicated gratings from ruled master
gratings generally have quite high SNRs,
though interference gratings usually have
even higher SNRs, since they have no ghosts
due to periodic errors in groove location and
lower interorder stray light.

In practical instruments, the effective
noise will also depend on the spectral
distribution of the light source and the
spectral sensitivity of the detector. For
example, a CsI detector has no sensitivity to
light of wavelength above 160 nm, and
therefore does not respond to long-
wavelength scattered light.
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RULED GRATINGS Ul

The first diffraction gratings made for
commercial use were mechanically ruled,
manufactured by burnishing grooves individ-
vally with a diamond tool against a thin
coating of evaporated metal applied to a plane
or concave surface. Such ruled gratings
comprise the majority of diffraction gratings
used in spectroscopic instrumentation.

GRATING RULING ENGINES

The most vital component in the produc-
tion of ruled diffraction gratings is the appa-
ratus, called a ruling engine, on which master
gratings are ruled. At present, the
Richardson Grating Laboratory has three
ruling engines in full-time operation, each
producing substantial numbers of high-qual-
ity master gratings every year. Each of these
systems produce gratings with very low
Rowland ghosts and high resolving power.

Selected diamonds, whose crystal axis is
oriented for optimum behavior, are used to
shape the grating grooves. The ruling dia-
monds are carefully shaped by skilled dia-
mond tool makers to produce the exact
groove profile required for each grating. The
carriage that carries the diamond back and
forth during ruling must maintain its position
to better than a few nanometers for ruling
periods that may last for one day or as long
as six weeks.

The mechanisms for advancing the grat-
ing carriages on all Laboratory engines are
designed to make it possible to rule gratings
with a wide choice of groove spacings. The
current Grating Catalog shows the range of
groove spacings available.

The Michelson engine. In 1947
Bausch & Lomb acquired its first ruling
engine from the University of Chicago; this
engine was originally designed by Albert
Michelson in the 1910s and rebuilt by B.
Gale. It underwent further refinement, which
greatly improved its performance, and has
produced a continuous supply of high quality
gratings of up to 200 x 250 mm ruled area.
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The Michelson engine originally used an
interferometer system to plot, every few
years, the error curve of the screw, from
which an appropriate mechanical correction
cam was derived. In 1990, this system was
superceded by the addition of a digital com-
puter servo control system based on a laser
interferometer. The Michelson engine is un-
usual in that it covers the widest range of
groove spacings of any ruling engine: it can
rule both plane and concave gratings, as
coarse as 20 grooves per millimeter (g/mm)
and as fine as 10 800 g/mm.

The Mann engine. The second engine
installed at the Laboratory has been produc-
ing gratings since 1953. It was originally
built by David W. Mann of Lincoln, Mas-
sachusetts. Bausch & Lomb equipped it with
an interferometric control system following
Harrison's technique. The Mann engine can
rule areas up to 100 x 110 mm, with virtually
no ghosts and nearly theoretical resolving
power.

While the lead screws of the ruling en-
gines are lapped to the highest precision at-
tainable, there are always residual errors in
both threads and bearings which must be
compensated to produce the highest quality
gratings. The Mann engine is equipped with
an automatic interferometer servo system that
continually adjusts the grating carriage to the
correct position as each groove is ruled. The
servo system effectively simulates a perfect
lead screw.

The 'B' engine. The third engine,
built by George Harrison of MIT, was
moved to Rochester in 1968. It has the
capacity to rule plane gratings to the greatest
precision ever achieved; these gratings may
be up to 400 mm wide, with grooves
(between 20 and 1500 per millimeter) up to
300 mm long. It uses a double interferometer
control system, based on a frequency-
stabilized laser, to monitor not only table
position but to correct residual yaw errors as
well. This engine produces gratings with
nearly theoretical resolving powers, virtually



eliminating Rowland ghosts and minimizing
stray light. It has also ruled almost perfect
echelle gratings, the most demanding appli-
cation of a ruling engine.

THE RULING PROCESS

Master gratings are ruled on carefully
selected well-annealed blanks of several dif-
ferent materials. The choice is generally
between BK-7 optical glass, special grades of
fused silica, or ZeroDur®. The optical sur-
faces of these blanks are polished to closer
than 1/10 for green light (about 50 nm), then
coated with a reflective film (usually
aluminum or gold).

Temperature and pressure controls are
especially important in the environment
around a ruling engine. Room temperature
must be held constant to within 0.01 °C for
small ruling engines (and to within 0.005 °C
for larger engines). Since the interferometric
control of the ruling process uses
monochromatic light, whose wavelength is
sensitive to the changes of the refractive
index of air with pressure fluctuations, atmo-
spheric pressure must be compensated for by
the system. A change in pressure of 2.5 mm
Hg corresponds to a change in wavelength of
one part per million, which (when allowed to
accumulate over tens of thousands of
grooves) will cause the interferometer to vary
the groove spacing during ruling. The ruling
engine must also be isolated from vibrations,
which are easily transmitted to the diamond,
this may be done by suspending the engine
mount from springs which isolate vibrations
between frequencies of 2 to 3 Hz (below
which there is no concern) to about 60 Hz,
above which vibrations are usually too small
to have a noticeable effect.

The actual ruling of a master grating is a
long, slow and painstaking process. The set-
up of the engine, prior to the start of the rul-
ing, requires great skill and patience. This
critical alignment is impossible without the
use of a high-power interference microscope,
or an electron microscope for more finely
spaced grooves.

After each microscopic examination, the
diamond is readjusted until the operator is
completely satisfied that the groove shape is
the best possible for the particular grating
being ruled. This painstaking adjustment,
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although time consuming, results in very
"bright" gratings with nearly all the diffracted
light energy concentrated in a specific angular
range from the grating. This ability to con-
centrate the light selectively at a certain part of
the spectrum is what distinguishes blazed
diffraction gratings from all others.

Master gratings are carefully tested to be
certain that they have met specifications
completely. The wide variety of tests run to
evaluate all the important properties include
resolution, efficiency, Rowland ghost inten-
sity, and surface accuracy. Wavefront inter-
ferometry is used when appropriate. If a
grating meets all specifications, it is used as a
master for the production of replica gratings.

VARIED LINE-SPACE (VLS)
GRATINGS

For the last century great effort has been
expended in keeping the spacing between
successive grooves uniform as a master
grating is ruled. As early as 1875, A. Cornu
realized that variations in the groove spacing
modified the curvature of the diffracted wave-
fronts. While periodic and random variations
were understood to produce stray light, a
uniform variation in groove spacing across
the grating surface was recognized by Cornu
to change the location of the focus of the
spectrum, which need not be considered a
defect if properly taken into account. He
determined that a planar classical grating,
which by itself would have no focusing
properties if used in collimated incident light,
would focus the diffracted light if ruled with
a systematic 'error' in its groove spacing. He
was able to verify this by ruling three grat-
ings whose groove positions were specified
to vary as each groove was ruled. Such
gratings, in which the pattern of straight par-
allel grooves has a variable yet well-defined
(though not periodic) spacing between suc-
cessive grooves, are now called varied line-
space (VLS) gratings.

The Michelson engine, which has digital
computer control, can readily rule VLS
gratings. Any groove spacing d(y) which
varies reasonably as a function of position y
along the grating surface can be programmed
into the computer. The relationship between
groove spacing (and curvature) and imaging
is discussed in chapter VIL



INTERFEREN CE (HOLOGRAPHIC) GRATINGS [V

Since the late 1960s, a method distinct
from mechanical ruling has also been used to
manufacture diffraction gratings. This
method involves the photographic recording
of a stationary interference fringe field. Such
interference gratings are unfortunately known
more commonly as holographic gratings,
although holography is not involved in their
generation or use. Interference gratings have
several characteristics which distinguish them
from ruled gratings.

In 1901 Aime Cotton produced experi-
mental interference gratings, fifty years be-
fore the concepts of holography were devel-
oped by Gabor. A few decades later,
Michelson considered the interferometric gen-
eration of diffraction gratings obvious, but
recognized that an intense monochromatic
light source and a photosensitive material of
sufficiently fine granularity did not then exist.
In the mid 1960s, ion lasers and photoresists
(grainless photosensitive materials) became
available; the former provided a strong
monochromatic line, and the latter was pho-
toactive at the molecular level, rather than at
the crystalline level (unlike, for example,
photographic film). In 1967 D. Rudolph and
G. Schmahl at the University of Gottingen
and A. Labeyrie and J. Flamand in France
independently produced the first interference
diffraction gratings of spectroscopic quality.

PRINCIPLE OF MANUFACTURE

Formation of an interference pat-
tern. When two sets of coherent equally
polarized monochromatic optical plane waves
of equal intensity intersect each other, a
standing wave pattern will be formed in the
region of intersection if both sets of waves
are of the same wavelength A (see Figure IV-
1). The combined intensity distribution
forms a set of straight equally-spaced fringes
(bright and dark lines). Thus a photographic
plate would record a fringe pattern, since the
regions of zero field intensity would leave the
film unexposed while the regions of
maximum intensity would leave the film
maximally exposed. Regions between these
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extremes, for which the combined intensity is
neither maximal nor zero, would leave the
film partially exposed. The combined inten-
sity varies sinusoidally with position as the
interference pattern is scanned along a line.
If the beams are not of equal intensity, the
minimum intensity will no longer be zero,
thereby decreasing the contrast between the
fringe. As a consequence, all portions of the
photographic plate will be exposed to some
degree.

20

blank

\

Figure IV-1. Formation of interference fringes. Two
collimated beams of wavelength A form an interfer-
ence pattern composed of straight equally spaced
planes of intensity maxima (shown as the horizontal
lines). A sinusoidally varying interference pattern is
found at the surface of a blank B placed perpendicular
to these planes.

The centers of adjacent fringes (that is,
adjacent lines of maximum intensity) are sep-
arated by a distance d, where

d = 2/(2 sinf) (4-1)
and 6 is the half the angle between the beams.
A small angle between the beams will pro-
duce a widely spaced fringe pattern (large d),
whereas a larger angle will produce a fine
fringe pattern. The lower limit for d is 4/2,
so for visible recording light, thousands of
fringes per millimeter may be formed.



Formation of the grooves. Master
interference diffraction gratings are recorded
in photoresist, a material whose inter-
molecular bonds are either strengthened or
weakened by exposure to light. Commer-
cially available photoresists are more sensi-
tive to some wavelengths than others; the
recording laser line must be matched to the
type of photoresist used. The proper combi-
nation of intense laser light and photoresist
(with high sensitivity to this wavelength
relative to other wavelengths from the same
laser) will reduce exposure time.

Photoresist gratings are chemically de-
veloped after exposure to reveal the fringe
pattern. A photoresist may be positive or
negative, though the latter is rarely used.
During chemical development, the portions of
a blank covered in positive photoresist which
have been exposed to light are dissolved,
while for negative photoresist the unexposed
portions are dissolved. Upon immersion in
the chemical developer, a surface relief
pattern is formed: for positive photoresist,
valleys are formed where the bright fringes
were, and ridges where the dark fringes
were. At this stage a master interference
grating has been produced; its grooves are
sinusoidal ridges. This grating may be
coated and replicated like master ruled
gratings.

CLASSIFICATION OF INTERFERENCE
GRATINGS

Single-beam interference. An inter-
ference pattern can be generated from a single
collimated monochromatic coherent light
beam if it is made to reflect back upon itself.
A standing wave pattern will be formed, with
intensity maxima forming planes parallel to
the wavefronts. The intersection of this
interference pattern with a photoresist-cov-
ered substrate will yield on its surface a
pattern of grooves, whose spacing d depends
on the angle 6 between the blank surface and
the planes of maximum intensity (see Figure
1V-2); the relation between d and 61is identical
to Eq. (4-1), though it must be emphasized
that the recording geometry behind the single-
beam interference grating (or Sheridon
grating) is different from that of the double-
beam geometry for which Eq. (4-1) was
derived.
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The groove depth 4 for a Sheridon grat-
ing is dictated by the separation between suc-
cessive planes of maximum intensity (nodal
planes); explicitly,

h= A/2n, (4-2)
where 4 is the wavelength of the recording
light and » the refractive index of the pho-
toresist. This severely limits the range of

available blaze wavelengths, typically to
those between 200 and 250 nm.
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Figure IV-2. Sheridon recording method. A colli-
mated beam of light, incident from the right, is
retroreflected by a plane mirror, which forms a stand-
ing wave pattern whose intensity maxima are shown.
A transparent blank, inclined at an angle & to the
fringes, will have its surfaces exposed to a sinu-
soidally varying intensity pattern.

Double-beam interference. The
double-beam interference pattern shown in
Figure IV-1 is a series of straight parallel
fringe planes, whose intensity maxima (or
minima) are equally spaced throughout the
region of interference. Placing a substrate
covered in photoresist in this region will form
a groove pattern defined by the intersection of
the surface of the substrate with the fringe
planes. If the substrate is planar, the grooves
will be straight, parallel and equally spaced,
though their spacing will depend on the angle
between the substrate surface and the fringe
planes. If the substrate is concave, the
grooves will be curved and unequally spaced,
forming a series of circles of different radii
and spacings. Regardless of the shape of the
substrate, the intensity maxima are equally
spaced planes, so the grating recorded will be
a classical equivalent interference grating
(more often called simply a classical grating).
This name recognizes that the groove pattern



(on a planar surface) is identical to that of a
planar classical ruled grating. Thus all
interference gratings formed by the inter-
section of two sets of plane waves are called
classical equivalents, even if their substrates
are not planar. Producing such a grating
requires high-grade collimating optics in the
recording set-up.

If two sets of spherical wavefronts are
used instead, as in Figure IV-3, a first gener-
ation interference grating is recorded. The
surfaces of maximum intensity are now con-
focal hyperboloids (if both sets of wavefronts
are converging, or if both are diverging) or
ellipsoids (if one set is converging and the
other diverging). This interference pattern
can be obtained by focusing the recording
laser light through pinholes (to simulate point
sources); no optical elements are required
between the pinholes and the grating blank.
Even on a planar substrate, the fringe pattern
will be a collection of unequally spaced
curves. Such a groove pattern will alter the
curvature of the diffracted wavefronts,
regardless of the substrate shape, thereby
providing focusing properties. Modification
of the curvature and spacing of the grooves
can be used to reduce aberrations in the
spectral images (see chapter VI).

Figure IV-3. First-generation recording method.
Laser light focused through pinholes at A and B di-
verges toward the grating blank. The standing wave
region is shaded; the intensity maxima are confocal
hyperboloids.

The addition of auxiliary concave mirrors
or lenses into the recording beams can render
the recording wavefronts toroidal (that is,
their curvature in two perpendicular direc-
tions will generally differ). The grating thus
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recorded is called a second generation
interference grating. The additional degrees
of freedom in the recording geometry (e.g.,
the location, orientation and radii of the
auxiliary mirrors) provide for further
aberration reduction above that of first
generation interference gratings.

THE RECORDING PROCESS

Interference gratings are recorded by
placing a light-sensitive surface in an inter-
ferometer. The generation of an interference
grating of spectroscopic quality requires a
stable optical bench and laser as well as pre-
cision optical components (mirrors, col-
limating optics, etc.). Ambient light must be
eliminated so that fringe contrast is maximal.
Thermal gradients and air currents, which
change the local index of refraction in the
beams of the interferometer, must be
avoided. The Richardson Grating Laboratory
records master interference gratings in its
specially-designed facility.

During the recording process, the com-
ponents of the optical system must be of
nearly diffraction-limited quality, and mir-
rors, pinholes and spatial filters must be ad-
justed as carefully as possible. Any object in
the optical system receiving laser illumination
will scatter this light toward the grating, thus
contributing to stray light. Proper masking
and baffling during recording are essential to
the successful generation an interference
grating, as is single-mode operation of the
laser throughout the duration of the exposure.

The blank on which the master interfer-
ence grating is to be produced must be coated
with a highly uniform, virtually defect-free
coating of photoresist. Compared with pho-
tographic film, photoresists are much less
sensitive to light during exposure, due to the
molecular nature of their interaction with
light. As a result, typical exposures may take
from minutes to hours, during which time an
extremely stable fringe pattern (and, there-
fore, optical system) is required. After expo-
sure, the blank is immersed in a developing
agent, which forms a surface relief fringe
pattern; coating the blank with metal then
produces a master interference diffraction
grating,.



DIFFERENCES BETWEEN RULED AND
INTERFERENCE GRATINGS

Due to the distinctions between the fabri-
cation processes for ruled and interference
gratings, each type has advantages and
disadvantages relative to the other, some of
which are described below.

Differences in stray light. Since
interference gratings do not involve burnish-
ing grooves into a thin layer of metal, the sur-
face irregularities on its grooves differ from
those of mechanically ruled gratings.
Moreover, errors of ruling, which are a mani-
festation of the fact that ruled gratings have
one groove formed after another, are
nonexistent in interferometric gratings, for
which all grooves are formed simultaneously.
If properly made, then, interference gratings
can be entirely free of both small periodic and
random groove placement errors found on
even the best mechanically ruled gratings.
Interference gratings offer significant ad-
vantages to spectroscopic systems in which
stray light is performance-limiting, such as in
the study of the Raman spectra of solid
samples.

Differences and limitations in the
groove profile. The groove profile has a
significant effect on the light intensity
diffracted from the grating (see chapter VIII).
While ruled gratings may have triangular or
trapezoidal groove profiles, interference grat-
ings usually have sinusoidal (or nearly
sinusoidal) groove profiles (see Figure IV-4).
A ruled grating and an interference grating,
identical in every way except in groove
profile, will have demonstrably different
efficiencies (diffraction intensities) for a
given wavelength and spectral order.
Moreover, ruled gratings are more easily
blazed (by choosing the proper shape of the
burnishing diamond) than are interference
gratings, which are usually blazed by ion
bombardment (ion etching). Differences in
the intensity diffracted into the order in which
the grating is to be used implies differences in
the intensities in all other orders as well; ex-
cessive energy in other orders usually makes
the suppression of stray light more difficult.
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Figure IV-4. Groove profiles for ruled and interfer-
ence gratings. (a) Triangular groove profile of a
mechanically ruled grating. (b) Sinusoidal groove
profile of an interference grating.

The distribution of groove profile char-
acteristics across the surface of a grating may
also differ between ruled and interference
gratings. For a ruled concave grating, the
blank curvature necessarily changes the
groove angle across the grating, and with it
the blaze wavelength. An interference
grating, on the other hand, usually
demonstrates much less variation in effi-
ciency characteristics across its surface.
Gratings have been ruled by changing the
facet angle at different places on the blank
during ruling. These so-called "multipartite"
gratings, in which the ruling is interrupted
and the diamond reoriented at different places
across the width of the grating, demonstrate
enhanced efficiency but do not provide the
resolving power expected from an uninter-
rupted ruling (since each section of grooves
may be out of phase with the others)
[HUTLEY AND HUNTER 1981].

Limitations in obtainable groove
frequencies. Limits on the number of
grooves per millimeter differ between ruled
and interference gratings: ruled gratings offer
a much wider range of groove spacings.
Below a few hundred grooves per millimeter
the recording optical system necessary to
generate interference gratings becomes
cumbersome and the properties of photoresist
are no longer adequate, while ruled gratings
can have as few as twenty grooves per
millimeter. For upper limits, interference
gratings recorded with visible light are
usually limited to 3600 grooves per
millimeter, whereas ruled gratings have been
produced with over 6000 grooves per
millimeter.



Differences in the groove patterns.
Classical ruled plane gratings, which consti-
tute the vast majority of ruled gratings, have
straight equally-spaced grooves. Classical
ruled concave gratings have circumferential
unequally-spaced grooves, but this groove
pattern, when projected onto the plane
tangent to the grating at its center, is still a set
of straight equally spaced lines. [It is the
projected groove pattern which governs
imaging] Even ruled varied line-space (VLS)
gratings (see chapter III) do not contain
curved grooves, except on curved blanks.
The aberration reduction possible with ruled
gratings is therefore limited to that possible
with straight grooves, though this limitation
is due to the mechanical motions possible
with present-day ruling engines rather than
with the burnishing process itself.

Interference gratings, on the other hand,
need not have straight grooves. Groove cur-
vature can be modified slightly to reduce
aberrations in the spectrum, thereby
improving the throughput and resolution of
imaging spectrometers. A fairly recent
spectrometer mount is the flat-field
spectrograph, in which the spectrum is
imaged onto a flat detector array and several
wavelengths are monitored simultaneously.,
Interference gratings can significantly
improve the imaging of such a grating
system, whereas classical ruled gratings are
not suitable for forming well-focused planar
spectra without auxiliary optics.

Differences in the substrate
shapes.  The interference pattern used to
record interference gratings is not dependent
on the substrate shape or dimension, so
gratings of low f/number can be recorded
interferometrically (mechanically ruled
gratings are usually limited to curvatures
above f/9). Consequently interference
concave gratings lend themselves more
naturally to systems with short focal lengths.
Interference gratings of unusual curvature can
be recorded easily; of course, there may still
remain technical problems associated with the
replication of such gratings.

Differences in generation time for
master gratings. A ruled master grating
is formed by burnishing each groove individ-
ually; to do so, the ruling diamond may tra-
verse a very large distance to rule one
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grating. For example, a square grating of
dimensions 100 x 100 mm with 1000
grooves per millimeter will require the dia-
mond to move 10 km (over six miles) and
takes several days to rule.

In the fabrication of a master interference
grating, on the other hand, the grooves are
created simultaneously. Exposure times vary
from minutes to hours, depending on the in-
tensity of the laser light used and the spectral
response (sensitivity) of the photoresist at
this wavelength. Even counting preparation
and development time, interference master
gratings are produced much more quickly
than ruled master gratings. Of course, an
extremely stable and clean optical recording
environment is necessary to record precision
interference gratings. For plane gratings,
high-grade collimating optics are required,
which can be a limitation for larger gratings.

Master interference gratings as large as
160 mm in diameter are made routinely at the
Richardson Grating Laboratory, but with
extra effort and care larger gratings can be
produced.



20




REPLICATED GRATINGS VYV

Years of research and development
pioneered at the Richardson Grating
Laboratory have contributed to the process
for manufacturing replicated diffraction
gratings (replicas). This process is capable
of producing duplicates of master gratings
which equal the quality and performance of
the master gratings. In certain gratings,
inversion of the groove, which is the result of
replication, increases efficiency significantly.

Exhaustive tests have shown that there is
no loss of resolution between master and
replica. There is no evidence of deterioration
or change in replica gratings with age or
when exposed to thermal variations from the
boiling point of nitrogen (77 K =-196 °C) to
50 °C. Even the highest vacuum, such as that
of outer space, has no effect on replica
gratings. The most prominent hazard to a
grating, either master or replica, is surface
contamination from fingerprints; should this
happen, a grating can sometimes be cleaned
or recoated. However, accidentally evapo-
rated contaminants, typical of vacuum
spectrometry, can be especially harmful when
baked on with ultraviolet radiation.

The process for making replica gratings
results in a grating whose grooves are formed
in a very thin layer of clear resin that adheres
strongly to the surface of the substrate mate-
rial. The optical surface of a reflection replica
is usually coated with aluminum, but gold or
platinum is recommended for greater dif-
fracted energy in certain spectral regions.
Transmission gratings are not subject to dete-
rioration under normal working conditions.
The ruled grooves of a grating can be dam-
aged very easily by brushing, wiping or
careless attempts at cleaning. The best rule,
by far, is to refrain completely from touching
the ruled surface of a grating and to provide
this surface with adequate protection during
handling and shipment.

Richardson Grating Laboratory replica
gratings are shipped with their ruled surfaces
protected by hard plastic covers. Plane
gratings are equipped with edge standoffs on
the cover to keep the covers from coming in
contact with the grating surface. It is im-
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portant to use care in removing the cover in
order to avoid scratching the grating surface.

THE REPLICATION PROCESS

The replication of a master diffraction
grating is a four-step process. First, a part-
ing agent is applied to the surface of the
master grating; this layer provides poor
adherence between the surface of the master
grating and the evaporated metallic surface of
the replica grating. A substrate is then
cemented with a thin film of low-shrinkage
epoxy to the grooved surface of the master
grating; this layer is usually 10 to 25 microns
in thickness. The epoxy is then cured,
resulting in a groove profile that is a faithfully
replica once the substrate and master are
separated.

CERTIFIED PRECISION DIFFRACTION
GRATINGS

Every replica grating offered for sale by
the Laboratory is marked "Certified Preci-
sion". This certification attests to the perfor-
mance and precision of the replica grating,
which is as good as, or better than, the mas-
ter grating from which it was produced, both
in performance and useful life.

The true value and usefulness of a replica
grating depends on its quality. To be certain
of no misunderstanding concerning quality,
each "Certified Precision" grating is accom-
panied by a certificate which traces the origin
of the replica to a specific master grating; this
certificate identifies the grating by both cata-
logue and serial numbers. The certificate also
shows the quality specifications for the
grating.

When writing us in regard to a particular
diffraction grating, please be certain to copy
both grating numbers accurately so that it
may be identified. The grating itself is identi-
fied by a sticker on the back which gives its
essential characteristics as well as blaze di-
rection.






PLANE GRATINGS AND THEIR MOUNTS VI

GRATING MOUNT TERMINOLOGY

The auxiliary collimating and focusing
optics which modify the wavefronts incident
on and diffracted by a grating, as well as the
angular configuration in which it is used, is
called its mount. Grating mounts are a class
of spectrometer, a term which usually refers
to any spectroscopic instrument, regardless
of whether it scans wavelengths individually
or entire spectra simultaneously, or whether it
employs a prism or grating. For this discus-
sion we consider grating spectrometers only.

A monochromator is a spectrometer that
images a single wavelength band at a time
onto an exit slit; the spectrum is scanned by
the relative motion of the entrance (and/or
exit) optics (usually slits) with respect to the
grating, though in practice it is almost always
the grating that rotates while the slits remain
fixed.

A spectrograph is a spectrometer that
images a range of wavelengths simul-
taneously, either onto photographic film or a
series of detector elements, or through sev-
eral exit slits (sometimes called a
polychromator). The defining characteristic
of a spectrograph is that an entire section of
the spectrum is recorded at once.

PLANE GRATING MOUNTS

A plane grating is one whose surface is
flat. Plane gratings are normally used in
collimated incident light, which they disperse
by wavelength but do not focus. These
mounts require auxiliary optics, such as
lenses or mirrors, to collect and focus the
energy. Some simplified plane grating
mounts illuminate the grating with converg-
ing light, though the focal properties of the
system will then depend on wavelength. For
simplicity, only plane reflection grating
mounts are discussed below, though each
mount may have a transmission grating ana-
logue.

Concave grating mounts are discussed in
Chapter VII.
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The Czerny-Turner Monochroma-
tor. This design involves a classical plane
grating illuminated by collimated light. The
incident light is usually diverging from a
source or slit, and collimated by a concave
mirror (the collimator), and the diffracted
light is focused by a second concave mirror
(the camera); see Figure VI-1. Ideally, since
the grating is planar and classical, and used in
collimated incident light, no aberrations
should be introduced into the diffracted
wavefronts. In practice, aberrations are con-
tributed by the off-axis use of the concave
spherical mirrors.

. collimator
entrance slit

exit slit
camera

Figure VI-1. The Czerny-Turner mount. The plane
grating provides dispersion and the concave mirrors
provide focusing.

Like all monochromator mounts, the
wavelengths are imaged individually. The
spectrum is scanned by rotating the grating;
this moves the grating normal relative to the
incident and diffracted beams, which (by Eq.
(2-1)) changes the wavelength diffracted
toward the camera. For a Czerny-Turner
monochromator, light incident and diffracted
by the grating is collimated, so the spectrum
remains at focus at the exit slit for each wave-
length, since only the grating can introduce
wavelength-dependent focusing properties.

Aberrations caused by the auxiliary
mirrors include astigmatism and spherical
aberration (each of which is contributed addi-
tively by the mirrors); as with all concave



mirror geometries, astigmatism increases as
the angle of reflection increases. Coma can
be eliminated at one wavelength through
proper choice of the angles of reflection at the
mirrors; due to the anamorphic (wavelength-
dependent) tangential magnification of the
grating, the images of the other wavelengths
experience subsidiary coma (which becomes
troublesome only in special systems).

The Ebert-Fastie Monochromator.
This design is a special case of a Czerny-
Turner mount in which a single relatively
large concave mirror serves as both the colli-
mator and the camera (Fig. VI-2). Its use is
limited, since stray light and aberrations are
more difficult to control.

entrance slit

i —
exit slit
I ~—
grating mirror
Figure VI-2. The Ebert-Fastie mount. A single

concave mirror replaces the two concave mirrors
found in Czemny-Turner mounts,

The Monk-Gillieson Monochro-
mator. In this mount (see Figure VI-3), a
plane grating is illuminated by converging
light (r <0). Usually light diverging from an
entrance slit (or fiber) is rendered converging
by off-axis reflection from a concave mirror
(which introduces aberrations, so the light
incident on the grating is not composed of
perfectly spherical converging wavefronts).
The grating diffracts the light, which con-
verges toward the exit slit; the spectrum is
scanned by rotating the grating to bring
different wavelengths into focus at or near the
exit slit. Often the angles of reflection (from
the primary mirror), incidence and diffraction
are small (measured from the appropriate
surface normals), which keeps aberrations
(especially off-axis astigmatism) to a mini-
mum.

24

mirror

grating
exit slit
N
N

Figure VI-3. The Monk-Gillieson mount. A plane
grating is used in converging light.

Since the incident light is not collimated,
the grating introduces wavelength-dependent
aberrations into the diffracted wavefronts (see
chapter VII). Consequently the spectrum
cannot remain in focus at a fixed exit slit
when the grating is rotated (unless this
rotation is about an axis displaced from the
central groove of the grating, as pointed out
by SCHROEDER [1970]). For low-resolution
applications, the Monk-Gillieson mount
enjoys a certain amount of popularity, since it
represents a simple and inexpensive
spectrometric system.

The Littrow Mount. A grating used in
the Littrow or autocollimating configuration
diffracts light of wavelength A back along the
incident light direction (Fig. VI-4). In a
Littrow monochromator, the spectrum is
scanned by rotating the grating; this reorients
the grating normal, so the angles of incidence
« and diffraction § change (even though a=
for all ). The same auxiliary optics can be
used as both collimator and camera, since the
diffracted rays retrace the incident rays. The
entrance slit and exit slit (or image plane)
must be offset slightly along the direction
parallel to the grooves so that they do not
coincide, which generally introduces out-of-
plane aberrations. The only true Littrow
monochromator application is laser tuning
(see chapter XII).



grating

entrance slit

exit slit

mirror

Figure VI-4. The Littrow monochromator mount.
The entrance and exit slits are slightly above and
below the dispersion plane, respectively; they are
shown separated for clarity.

Double Monochromators. Two
monochromator mounts used in series form a
double monochromator. The exit slit of the
first monochromator usually serves as the
entrance slit for the second monochromator
(see Figure VI-5). Stray light in a double
monochromator is much lower than in a
single monochromator: it is the product of
ratios of stray light intensity to parent line
intensity for each system. Also, the recipro-
cal linear dispersion P of the entire system is
the sum of the reciprocal linear dispersions of
each monochromator.
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intermediate

entrance slit

mirror

Figure VI-5. A double monochromator mount.

Triple Monochromators. A triple
monochromator mount consists of three
monochromators in series. These mounts are
used only when the demands to reduce stray
light are extraordinarily severe (e.g., Raman
spectroscopy of solid samples).






CONCAVE GRATINGS AND THEIR MOUNTS VI

A concave reflection grating can be
modelled as a concave mirror which diffracts;
it can be thought to reflect light by virtue of
its concavity, and to disperse light by virtue
of its groove pattern.

Since their invention by Henry Rowland
in 1883, concave diffraction gratings have
played an important role in spectrometry.
Compared with plane gratings, they offer one
important advantage: they provide the focus-
ing (imaging) properties to the grating which
otherwise must be supplied by separate opti-
cal elements. For spectroscopy below 110
nm, for which the reflectivity of available
mirror coatings is low, concave gratings
allow for systems free from focusing mirrors
that would reduce throughput two or more
orders of magnitude.

Many configurations for concave spec-
trometers have been proposed. Some are
variations of the Rowland circle, while some
place the spectrum on a flat field, which is
more suitable for charge-coupled device
(CCD) array instruments. The Seya-
Namioka concave grating monochromator is
especially suited for scanning the spectrum
by rotating the grating around its own axis.

CLASSIFICATION OF GRATING TYPES

The imaging characteristics of a concave
grating system are governed by the size,
location and orientation of the entrance and
exit optics (the mount), the aberrations due to
the grating, and the aberrations due to any
auxiliary optics in the system. [In this chap-
ter we address only simple systems, in which
the concave grating is the single optical ele-
ment; auxiliary mirrors and lenses are not
considered.] The imaging properties of the
grating itself are determined completely by
the shape of its blank (its curvature or figure)
and the spacing and curvature of the grooves
(its groove pattern).

Gratings are classified both by their
groove patterns and by their blank curva-
tures. In the previous chapter we restricted
our attention to plane classical gratings and
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their mounts. In this chapter, more general
gratings and grating systems are considered.

Groove patterns. A classical grating
is one whose grooves, when projected onto
the tangent plane, form a set of straight
equally-spaced lines. Until the last few
decades, the vast majority of gratings were
classical, in that any departure from uniform
spacing, groove parallelism or groove
straightness was considered a flaw. Classical
gratings are made routinely both by mechani-
cal ruling and interferometric recording.

A first generation interference grating has
its grooves formed by the intersection of a
family of confocal hyperboloids (or ellip-
soids) with the grating blank. When pro-
jected onto the tangent plane, these grooves
have both unequal spacing and curvature.
First generation interference gratings are
formed by recording the master grating in a
field generated by two sets of spherical wave-
fronts, which may emanate from a point
source or be focused toward a virtual point.

A second generation interference grating
has the light from its point sources reflected
by concave mirrors so that the recording
wavefronts are toroidal.

A varied line-space (VLS) grating is one
whose grooves, when projected onto the tan-
gent plane, form a set of straight parallel lines
whose spacing varies from groove to groove.
Varying the groove spacing across the sur-
face of the grating moves the tangential focal
curve, while keeping the groove straight and
parallel keeps the sagittal focal curve fixed.

Blank shapes. A concave grating is
one whose surface is concave, regardless of
its groove pattern or profile, or the mount in
which it is used. Examples are spherical
blanks (whose surfaces are portions of a
sphere, which are definable with one radius)
and toroidal blanks (definable by two radii).
Spherical blanks are by far the most common
concave substrates, since they are easily
manufactured and toleranced, and can be
replicated in a straightforward manner.



Toroidal substrates are much more difficult to
align, tolerance and replicate. More general
blank shapes are also possible, such as ellip-
soidal or paraboloidal blanks, but tolerancing
and replication complications relegate these
grating surfaces out of the mainstream.

The shape of a concave grating can be
characterized either by its radii or its curva-
tures. The radii of the slice of the blank in
the principal (dispersion) plane is called the
tangential radius R, while that in the plane
parallel to the grooves at the grating center is
called the sagittal radius p. Equivalently, we
can define tangential and sagittal curvatures
1/R and 1/p, respectively.

A plane grating is one whose surface is
planar. While plane gratings can be thought
of as a special case of concave gratings (for
which the radii of curvature of the blank be-
come infinite), we treat them separately here
(see the previous chapter).

CLASSICAL CONCAVE GRATING
IMAGING

In Figure VII-1, a classical grating is
shown; the Cartesian axes are defined as
follows: the x-axis is the outward grating
normal to the grating surface at its center
(point O), the y-axis is tangent to the grating
surface at O and perpendicular to the grooves
there, and the z-axis completes the right-
handed triad of axes (and is therefore parallel
to the grooves at O). Light from point source
A(¢, n, 0) is incident on a grating at point O;
light of wavelength A in order m is diffracted
toward point B(¢', ', 0). Since point A was
assumed, for simplicity, to lie in the xy
plane, to which the grooves are perpendicular
at point O, the image point B will lie in this
plane as well; this plane is called the principal
plane (also called the tangential plane or the
dispersion plane (see Figure VII-2). Ideally,
any point P(x, y, z) located on the grating
surface will also diffract light from A to B.

The plane through points O and B per-
pendicular to the principal plane is called the
sagittal plane, which is unique for this wave-
length. The grating tangent plane is the plane
tangent to the grating surface at its center
point O (i.e., the yz plane). The imaging
effects of the groove spacing and curvature
can be completely separated from those due
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to the curvature of the blank if the groove
pattern is projected onto this plane.
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Figure VII-1. Use geometry. The grating surface
centered at O diffracts light from point A to point B,
P is a general point on the grating surface.

Figure VII-2. Use geometry — the principal plane.
Points A, B and O lie in the xy (principal) plane; the
general point P on the grating surface may lie outside
this plane. The z-axis comes out of the page at O.

The imaging of this optical system can be
investigated by considering the optical path
difference OPD between the pole ray AOB
(where O is the center of the grating) and the
general ray APB (where P is an arbitrary
point on the grating surface). Application of
Fermat's principle to this path difference, and
the subsequent expansion of the results in
power series of the codrdinates of the tangent
plane (y and z), yields expressions for the
aberrations of the system.

The optical path difference is

OPD = <APB> — <AOB> + NmA,  (7-1)



where <APB> and <AOB> are the geometric
lengths of the general and pole rays, respec-
tively (both multiplied by the index of refrac-
tion), m is the diffraction order, and N is the
number of grooves on the grating surface
between points O and P. The last term in Eq.
(7-1) accounts for the fact that the distances
<APB> and <AOB> need not be exactly
equal for the light along both rays to be in
phase at B: due to the wave nature of light,
the light is in phase at B even if there are an
integral number of wavelengths between
these two distances. If points O and P are
one groove apart (N = 1), the number of
wavelengths in the difference <APB> —
<AOB> determines the order of diffraction
nt.

From geometric considerations, we find

<APB> = <AP> + <PB>

V(E-xf+(n-yf+ 22

+NE =P+ -P+22, (7

and similarly for <AOB>, if the medium of
propagation is air (n = 1). The optical path
difference can be expressed more simply if
the codrdinates of points A and B are plane
polar rather than Cartesian: letting

<AO>=r, <OB>=r, (7-3)
we may write

E=rcosa, 11=rsing;
(74)

é_g- = COSﬁ, T.|'= r Sinﬁ,

where the angles of incidence and diffraction
(e and B) follow the sign convention
described in chapter I1.

The power series for OPD can be written
in terms of the grating surface point codrdi-
nates y and z:

oo oa

OPD= ) Y Fyyid, (75)
i=0j=0

where Fjj, the expansion coefficient of the
(i) term, describes how the rays (or wave-
fronts) diffracted from point P toward the
ideal image point B differ (in direction, or

curvature, efc.) in proportion to y‘z/ from
those from point O. The x-dependence of
OPD has been suppressed by writing

x=x(yz)= Y Y ayyizl. (7-6)
= =

This equation makes use of the fact that the
grating surface is usually a regular function
of position, so x is not independent of y and
z (i.e., if it is a spherical surface of radius R,
then (x — R)? + y2 + z2 = R?).

By analogy with the terminology of lens
and mirror optics, we call each term in series
(7-5) an aberration, and F; its aberration
coefficient. An aberration is absent from the
image of a given wavelength (in a given
diffraction order) if its associated coefficient
Fj is zero.

Since we have imposed a plane of sym-
metry on the system (the principal (xy)
plane), all terms F;; for which j is odd
vanish. Moreover, Fgg = 0, since the expan-
sion (7-5) is about the origin O. The lowest-
(first-) order term F1g in the expansion, when
set equal to zero, yields the grating equation:

mA =d (sina + sinff). (2-1)

By Fermat's principle, we may take this
equation to be satisfied for all images, which
leaves the second-order aberration terms as
those of lowest order which need not vanish.
The generally accepted terminology is that a
stigmatic image has vanishing second-order
coefficients even if higher-order aberrations
are still present.

The second order terms describe the tan-
gential and sagittal focusing:

Fpy = cosax (%iwq . am) + cosfd (c—?’é - a;g)
r
=1(r, a) + I(r', B), (7-7)

F =(l-a cosa)+(1——am cosﬁ)
02 2 & 2r

= 8(r, &) + 5(r', B), (7-8)

Foo governs the tangential (or spectral)
focusing of the grating system, while Fo2
governs the sagittal focusing. The associated



aberrations are called defocus and
astigmatism, respectively. The two aberra-
tions describe the extent of a monochromatic
image: defocus pertains to the blurring of the
image — its extent of the image along the dis-
persion direction (i.e., in the tangential
plane). Astigmatism pertains to the extent of
the image in the direction perpendicular to the
dispersion direction. In more common (but
sometimes misleading) terminology, defocus
applies to the "width" of the image in the
spectral (dispersion) direction, and astigma-
tism applies to the "height" of the spectral
image; these terms imply that the xy
(tangential) plane be considered as
"horizontal" and the yz (sagittal) plane as
"vertical".

Actually astigmatism more correctly
defines the condition in which the tangential
and sagittal foci are not coincident, which
implies a line image at the tangential focus. It
is a general result of the off-axis use of a
concave mirror (and, by extension, a concave
reflection grating as well). A complete three-
dimensional treatment of OPD shows that the
image is actually an arc; image points away
from the center of the ideal image are
diffracted toward the longer wavelengths.
This effect, which technically is not an aber-
ration, is called (spectral) line curvature, and
is most noticeable in the spectra of Paschen-
Runge mounts (see later in this chapter).
Figure VII-3 shows astigmatism in the image
of a wavelength diffracted off-axis from a
concave grating, ignoring line curvature.

Figure VII-3. Astigmatic focusing of a concave
grating. Light from point A is focused into a line
parallel to the grooves at T (the tangential focus) and
perpendicular to the grooves at S (the sagittal focus).
Spectral resolution is maximized at T,

Since grating images are generally astig-
matic, the focal distances r" in Egs. (7-7) and
(7-8) should be distinguished. Calling r’; and
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r's the tangential and sagittal focal distances,
respectively, we may set these equations
equal to zero and solve for the focal curves
r‘T(l) and r's(t?h):

e e 7-9
rad )_A + B cosp’ (73
Po(A)y = ——— (7-10)
S™TD + E cosp’
Here we have defined
A = Bcosa — 90?_—2“, B = 2 ay,
(7-11)

D = Ecosa - rl’ E = 2agp,

where apg and ag; are the coefficients in Eq.
(7-6) (e.g., azo = ap2 = 1/(2R) for a spherical
grating of radius R). These expressions are
completely general for classical grating sys-
tems; that is, they apply to any type of grating
mount or configuration.

Of the two primary (second-order) focal
curves, that corresponding to defocus (Fyq)
is of greater importance in spectroscopy,
since it is spectral resolution which is most
crucial to grating systems. For this reason
we do not concern ourselves with locating the
image plane at the "circle of least confusion";
rather, we try to place the image plane at or
near the tangential focus (where Foq = 0).
For concave gratings (apg # 0), there are two
well-known solutions to the defocus equation
Fag = 0.

The Rowland circle is a circle whose
diameter is equal to the tangential radius of
the grating blank, and which passes through
the grating center (point O in Figure VII-5).
If the point source A is placed on this circle,
the tangential focal curve also lies on this
circle. This solution is the basis for Rowland
circle and Paschen-Runge mounts. For the
Rowland circle mount,

r= cosaf2ay =R cosa,
(7-12)
r'r= cosf2am = R cosp.

The sagittal focal curve is



-1
cosa+cosf 1

P R cosa

r's = (7']3)
(where p is the sagittal radius of the grating),
which is always greater than r’; (even for a
spherical blank, for which p = R) unless a =
B =0. Consequently this mount suffers from
astigmatism, which in some cases is consid-
erable.

The Wadsworth mount is one in which

the source light is collimated (r — <), so that
the tangential focal curve is given by

) cos?B R cos’B e
1=y ax (cosc + cosf)  cosa + cosp’ (7-14)
The sagittal focal curve is
P
s 1 (7-15)

" 2 ap (cosa +cosp)  cosa + cosB’

In this mount, the imaging from a classical
spherical grating (p = R) is such that the
astigmatism of the image is zero only for g =
0, though this is true for any incidence angle
.

While higher-order aberrations are usu-
ally of less importance than defocus and
astigmatism, they can be prohibitively large
in common circumstances. The third-order
aberrations, primary or tangential coma Fy
and secondary or sagittal coma Fy;, are given

by

Fyo= _si?a I(r, o) + ____sin’ﬁ I, p)
r

— asg (cosa + cosf), (7-16)
Fip= SQ;Q Str, o) + §£r—l’ﬁS(r’, B)
r
—aj; (cosa + cosf), (7-17)

where T and § are defined in Eqs. (7-7) and
(7-8). Often one or both of these third-order
aberrations is significant in a spectral image,
and must be minimized with the second-order
aberrations.
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NONCLASSICAL CONCAVE GRATING
IMAGING

For nonclassical groove patterns, the
aberration coefficients Fj; must be generalized
to account for the image-modifying effects of
the variations in curvature and spacing of the
grooves, as well as for the focusing effects of
the concave blank:

Fy=M;+ _”:1 AH;=M;+HYy  (7-18)

0

The terms M;; are simply the Fj; coefficients
for classical concave grating mounts, dis-
cussed above. The H'; coefficients describe
the groove pattern. Iéor classical gratings,
H'; =0 for all terms of order two or higher
(i +j=2). The tangential and sagittal focal
distances (Egs. (7-9) and (7-10)) must now
be generalized:

cos?B
A + Bcosp+ Csing’

r(d) = (7-19)

_ 1
" D + EcosB+ Fsing’

r's(2) (7-20)

where in addition to Egs. (7-11) we have

C==0H% ~F=-28: (7-21)
Here H'yp and H'y, being the terms which
govern the effect of the groove pattern on the
tangential and sagittal focusing. For a first
generation interference grating, for example,
the H;; coefficients may be written in terms
of the parameters of the recording geometry
(see Figure VII-4):

H'yg ==T(re, ) + T(rp, 8), (7-22)

H'oy == 8(rc. ¥) + S(rp, 8), (7-23)
where C(rc, 7) and D(rp, ) are the plane
polar coordinates of the recording points.
These equations are quite similar to Egs. (7-
7) and (7-8), due to the similarity in Figures
VII-4 and VII-2.



Figure VII-4. Recording parameters. Spherical
waves emanate from point sources C and D; the inter-
ference pattern forms fringes on the concave blank
centered at O,

For VLS gratings (see chapter IV), the
terms Hj; are written in terms of the groove
spacing coefficients rather than in terms of
recording codrdinates.

More details on the imaging properties of
gratings systems can be found in NAMIOKA
[1959] and NODA er al. [1974].

REDUCTION OF ABERRATIONS

In the design of grating systems, there
exists several degrees of freedom whose
values may be chosen to optimize image qual-
ity. For monochromators, the locations of
the entrance slit A and exit slit B relative to
the grating center O provide three degrees of
freedom (or four, if no plane of symmetry is
imposed); the missing degree of freedom is
restricted by the grating equation, which sets
the angular relationship between the lines AO
and BO. For spectrographs, the location of
the entrance slit A as well as the location,
orientation and curvature of the image field
provide degrees of freedom (though the
grating equation must be satisfied). In addi-
tion, the curvature of the grating blank pro-
vides freedom, and the aberration coefficients
H'j; for an interference grating (or the equiv-
alent terms for a VLS grating) can be chosen
to improve imaging. Even in systems for
which the grating use geometry has been
specified, there exist several degrees of free-
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dom due to the aberration reduction possibili-
ties of the grating itself.

Algebraic techniques can find sets of de-
sign parameters which minimize image size at
one or two wavelengths, but to optimize the
imaging of an entire spectral range is usually
so complicated that computer implementation
of a design procedure is essential. The
Richardson Grating Laboratory has devel-
oped a set of proprietary computer programs
which are used to design and analyze grating
systems. These programs allow selected sets
of parameters governing the use and record-
ing geometries to vary within prescribed
limits. Optimal imaging is found by com-
paring the imaging properties for systems
with different sets of parameters values.

CONCAVE GRATING MOUNTS

Rowland Circle Spectrographs.
The first concave gratings of spectroscopic
quality were ruled by Rowland, who
invented them in 1881, also designing their
first mounting. Placing the ideal source point
on the Rowland circle forms spectra on that
circle free from defocus and primary coma at
all wavelengths (i.e., Fog = F30 = 0 for all 1);
while spherical aberration is residual and
small, astigmatism is usually severe.
Originally a Rowland circle spectrograph
employed a photographic plate bent along a
circular arc on the Rowland circle to record

Rowland circle )
entrance slit

grating spectrum

Figure VII-5. The Rowland Circle spectrograph.
Both the entrance slit and the diffracted spectrum lie
on the Rowland circle, whose diameter equals the
tangential radius of curvature R of the grating and
which passes through the grating center. Light of
two wavelengths is shown focused at different points
on the Rowland circle.




the spectrum in its entirety. Today it is more
common for a series of exit slits to be cut into
a circular mask to allow the recording of
several discrete wavelengths photoelectri-
cally; this system is called the Paschen-Runge
mount. Other configurations based on the
imaging properties of the Rowland circle are
the Eagle mount and the Abney mount, both
of which are described by Hutley and by
Meltzer.

Unless the exit slits (or photographic
plates) are considerably taller than the
entrance slit, the astigmatism of Rowland
circle mounts usually prevents more than a
small fraction of the diffracted light from
being recorded, which greatly decreases the
efficiency of the instrument. Increasing the
exit slit heights helps collect more light, but
since the images are curved, the exits slits
would have to be curved as well to maintain
optimal resolution. To complicate matters
further, this curvature depends on the
diffracted wavelength, so each exit slit would
require a unique curvature. Few instruments
have gone to such trouble, so most Rowland
circle grating mounts collect only a small
portion of the light incident on the grating.
For this reason these mounts are adequate for
strong sources (such as the observation of the
solar spectrum) but not for less intense
sources (such as stellar spectra).

The imaging properties of instruments
based on the Rowland circle spectrograph,
such as direct readers and atomic absorption
instruments, can be improved by the use of
nonclassical gratings. Replacing the usual
concave classical gratings with concave
aberration-reduced gratings, astigmatism can
be improved substantially. Rowland circle
mounts modified in this manner direct more
diffracted light through the exit slits without
degrading resolution.

The Wadsworth Spectrograph.
When a classical concave grating is il-
luminated with collimated light (rather than
from a point source on the Rowland circle),
spectral astigmatism on and near the grating
normal is greatly reduced. Such a grating
system is called the Wadsworth mount. The
wavelength-dependent aberrations of the grat-
ing are compounded by the aberration of the
collimating optics, though use of a
paraboloidal mirror illuminated on-axis will
eliminate off-axis aberrations and spherical
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aberrations. The Wadsworth mount suggests
itself in situations in which the light incident
on the grating is naturally collimated (from,
for example, synchrotron radiation sources).
In other cases, an off-axis parabolic mirror
would serve well as the collimating element.

grating

spectrum

Figure VII-6. The Wadsworth spectrograph.
Collimated light is incident on a concave grating;
light of two wavelengths is shown focused at different
points. GN is the grating normal.

Flat Field Spectrographs. One of
the advantages of changing the groove pattern
(as on a first- or second- generation interfer-
ence grating or a VLS grating) is that the
focal curves can be modified, yielding grating
mounts which differ from the classical ones.
A logical improvement of this kind on the
Rowland circle spectrograph is the flar-field
spectrograph, in which the tangential focal
curve is removed from the Rowland circle
and rendered nearly linear over the spectrum
of interest (see Figure VII-7). While a
grating cannot be made which images a
spectrum perfectly on a line, one which
forms a spectrum on a sufficiently flat surface
is ideal for use in linear detector array
instruments of moderate resolution. This
development has had a significant effect on
spectrograph design.

entrance slit

planar

grating spectrum

Figure VII-7. A flat-field spectrograph.



The relative displacement between the
tangential and sagittal focal curves can also be
reduced via VLS or interferometric modifi-
cation of the groove pattern. In this way, the
resolution of a flat-field spectrometer can be
maintained (or improved) while its astigma-
tism is decreased; the latter effect allows more
light to be transmitted through the exit slit (or
onto the detector elements). An example of
the process of aberration reduction is shown
in Figure VII-8.

? = >
(@) (b) ()

Figure VII-8. Modification of focal curves. The
primary tangential focal curve (Fyy = 0) is thick; the
primary sagittal focal curve (Fg, = 0) is thin. (a)
Focal curves for a classical (H,, = Hy, = 0) concave
grating, illuminated off the normal (e # 0) - the dark
curve is an arc of the Rowland circle. (b) Choosing a
suitable nonzero Hy value moves the tangential focal
arc so that part of it is nearly linear, suitable for a
flat-field spectrograph detector. (c) Choosing a suit-
able nonzero value of Hy, moves the sagittal focal
curve so that it crosses the tangential focal curve,
providing a stigmatic image.

Constant-Deviation Monochroma-
tors. In a constant-deviation monochroma-
tor, the angle 2K between the entrance and
exit arms is held constant as the grating is ro-
tated (thus scanning the spectrum; see Figure
VII-9). This angle is called the deviation
angle or angular deviation. While plane or
concave gratings can be used in constant-de-
viation mounts, only in the latter case can
imaging be made acceptable over an entire
spectrum without auxiliary focusing optics.

The Seya-Namioka monochromator is a
very special case of constant-deviation mount
using a classical spherical grating, in which
the deviation angle 2K between the beams
and the entrance and exit slit distances (r and
r’) are given by
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2K =70°30",

r=r"=R cos(70°30/2), (7-24)
where R is the radius of the spherical grating
blank. The only moving part in this system
is the grating, through whose rotation the
spectrum is scanned. Resolution may be
quite good in part of the spectrum, though it
degrades farther from the optimal wave-
length; astigmatism is high, but at an
optimum. Replacing the grating with a
classical toroidal grating can reduce the
astigmatism, if the minor radius of the toroid
is chosen judiciously. The reduction of
astigmatism by suitably designed interference
gratings is also helpful, though the best way
to optimize the imaging of a constant-devia-
tion monochromator is to relax the restric-
tions (7-24) on the use geometry.

Figure VII-9. Constant-deviation monochromator
geometry. To scan wavelengths, the entrance slit A
and exit slit B remain fixed as the grating rotates.
The deviation angle 2K is measured from the exit arm
to the entrance arm.




IMAGING PROPERTIES OF WVIII
GRATING SYSTEMS

CHARACTERIZATION OF IMAGING
QUALITY

In the previous chapter, we formulated
the optical imaging properties of a grating
system in terms of wavefront aberrations.
After arriving at a design, though, this
approach is not ideal for observing the
imaging properties of the system. Two tools
of image analysis — spot diagrams and line-
spread functions — are discussed below.

Geometric Raytracing & Spot Dia-
grams. Raytracing (using the laws of ge-
ometrical optics) is superior to wavefront
aberration analysis in the determination of
image quality. Aberration analysis is an
approximation to image analysis, since it
involves expanding quantities in infinite
power series and considering only a few of
its terms. Raytracing, on the other hand,
does not involve approximations, but shows
(in the absence of the diffractive effects of
physical optics) where each ray of light inci-
dent on the grating will diffract. It would be
more exact to design grating systems with a
raytracing procedure as well, though to do so
would be computationally demanding.

The set of intersections of the diffracted
rays and the image plane forms a set of
points, called a spot diagram. In Figure VIII-
1, several simple spot diagrams are shown;
their horizontal axes are in the plane of
dispersion (the tangential plane), and their
vertical axes are in the sagittal plane. In (a)
an uncorrected (out-of-focus) image is
shown; (b) shows good tangential focusing,
and (c) shows virtually point-like imaging.
All three of these images are simplistic in that
higher-order aberrations (such as coma and
spherical aberration) render typical spot dia-
grams asymmetric, as in (d).

A straightforward method of evaluating
the imaging properties of a spectrometer at a
given wavelength is to measure the tangential
and sagittal extent of an image (often called

the width w’ and height A" of the image,
respectively).
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Figure VIII-1. Spot diagrams. In (a) the image is
out of focus. In (b), the image is well focused in the
tangential plane only; the line curvature inherent to
grating-diffracted images is shown. In (c) the image
is well focused in both directions — the individual
spots are not discernable. In (d) a more realistic
image is shown.

w
=
oo |
©
. :‘ Figure VIII-2. Image
dimensions. The width w’
I : U h and height &’ of the image
" in the image plane are the
'.. dimensions of the smallest
. rectangle which contains
¢ o | the spots.

Geometric raytracing provides spot dia-
grams in good agreement with observed
spectrometer images, except for well-focused
images, in which the wave nature of light



dictates a minimum size for the image. Even
if the image of a point object is completely
without aberrations, it is not a point image,
due to the diffraction effects of the pupil
(which is usually the perimeter of the grat-
ing). The minimal image size, called the
diffraction limit, can be easily estimated for a
given wavelength as the diameter a of the
Airy disk for a mirror in the same geometry:

(A
a = 2442 f/n0oyrpur = 2442, WL((:B_gE

(8-1)
Here f/nogurpur 18 the output focal ratio, r'(1)
is the focal distance for this wavelength, and
W is the width of the grating (see Eq. (2-20),
chapter II). Results from raytrace analyses
which use the laws of geometrical optics only
should not be considered valid if the dimen-
sions of the image are found to be near or
below the diffraction limit calculated from
Eq. (8-1).

Linespread Calculations A funda-
mental problem with geometric raytracing
procedures (other than that they ignore the
variations in energy density throughout a
cross-section of the diffracted beam and the
diffraction efficiency of the grating) is its
ignorance of the effect that the size and shape
of the exit aperture has on the measured
resolution of the instrument.

An alternative to merely measuring the
extent of a spectral image is to compute its
linespread function, which is the convolution
of the (monochromatic) image of the entrance
slit with the exit aperture (the exit slit in a
monochromator, or a detector element in a
spectrograph). A close physical equivalent
is scanning the monochromatic image by
moving the exit aperture past it in the image
plane, and recording the light intensity pass-
ing through the slit as a function of position
in this plane.

The linespread calculation thus described
accounts for the effect that the entrance and
exit slit dimensions have on the resolution of
the grating system.

INSTRUMENTAL IMAGING

With regard to the imaging of actual opti-
cal instruments, it is not sufficient to state that
ideal performance (in which geometrical aber-
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rations are completely eliminated and the
diffraction limit is ignored) is to focus a point
object to a point image. All real sources are
extended sources — that is, they have finite
widths and heights. The ideal imaging of a
square light source is not even a square
image, since the magnification of the object
(in both directions) is a natural and unavoid-
able consequence of diffraction from a

grating,

Magnification of the entrance
aperture. The image of the entrance slit,
ignoring aberrations and the diffraction limit,
will not have the same dimensions as the en-
trance slit itself. Calling w and s the width
and height of the entrance slit, and w' and A’
the width and height of the image, the tan-
gential and sagittal magnifications yr and xs
are

r’ cosa hor
= ’ == {8'2)
rcosf s R T

wl
xT:W—

These relations, which indicate that the size
of the image of the entrance slit will usually
differ from that of the entrance slit itself, are
derived below.

Figure VIII-3 shows the plane of disper-
sion. The grating center is at O; the x-axis is
the grating normal and the y-axis is the line
through the grating center perpendicular to
the grooves at O. Monochromatic light of
wavelength A leaves the entrance slit (of
width w) located at the polar coodrdinates (r,
) from the grating center O and is diffracted

Figure VIII-3. Geometry showing tangential magni-
fication. Monochromatic light from the entrance slit,
of width w, is projected by the grating to form an
image of width w'.




along angle g. When seen from O, the
entrance slit subtends an angle Aa = w/r in
the dispersion (xy) plane. Rays from one
edge of the entrance slit have incidence angle
o, and are diffracted along f; rays from the
other edge have incidence angle o+ Aa, and
are diffracted along 8 -Ap. The image
(located a distance r’ from O), therefore
subtends an angle A when seen from O, has
width w’=r"Ap. The ratio yr = w'/w is the
tangential magnification.

We may apply the grating equation to the
rays on either side of the entrance slit:

GmA = sine + sinf, (8-3)

GmA = sin(a+A)+ sin(-Af). (8-4)
Here G (= 1/d) is the pitch of the grating (the
grooves frequency along the y-axis at O) and
m is the diffraction order. Expanding
sin(a+Aa) in Eq. (8-4) in a Taylor series
about Aa = 0, we obtain

sin{fo+Aq@) = sing + (cosa )Aa + ..., (8-5)
where terms of order two or higher in Aa
have been truncated. Using Eq. (8-5) (and
its analogue for sin(-Ap)) in Eq. (8-4), and
subtracting it from Eq. (8-3), we obtain

cosax Aa = cosfB AB, (8-6)

and therefore
AB - cosa -
Ao cosfB’ o)

from which the first of Egs. (8-2) follows.

Figure VIII-4 shows the same situation in
the sagittal plane, which is perpendicular to
the principal plane and contains the pole
diffracted ray. The entrance slit is located be-
low the principal plane; consequently, its
image is above this plane. A ray from the top
of the center of the entrance slit is shown.
Since the grooves are parallel to the sagittal
plane at O, the grating acts as a mirror in this
plane, so the angles ¢ and ¢ are equal in
magnitude. Ignoring signs, their tangents are
equal as well:

’

tang = tang’ — z;= -,

i ™

(8-8)

~
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where z and z’ are the distances from the
entrance and exit slit points to the principal
plane. A ray from an entrance slit point a
distance Iz + Al from this plane will image
toward a point |z’ + &'l from this plane,
where A’ now defines the height of the
image. As this ray is governed by reflection
as well,

z+h _ 2K

r v

fany=tany — (8-9)

Simplifying this using Eq. (8-8) yields the
latter of Egs. (8-2).

hf

PRINCIPAL
PLANE

Figure VIII4. Geometry showing sagittal magnifica-
tion. Monochromatic light from the entrance slit, of
height 4, is projected by the grating to form an image
of height A",

Effects of the entrance aperture
dimensions. In most instances, good
approximations to the width w” and height A’
of the image of an entrance slit of width w
and height & are given by

w'=xrw+ 0w,
(8-10)
h'=xg h+ O,

where 8w’ and 84" are the width and height
of the image of a point source. This equation
allows the imaging properties of a grating
system with an entrance slit of finite area to
be estimated quite well from the imaging
properties of the system in which an
infinitesimally small object point is consid-
ered. In effect, rays need only be traced from
one point in the entrance slit (which deter-



mines dw’ and 84"), from which the image
dimensions for an extended entrance slit can
be calculated using Egs. (8-10). These
approximations ignore subtle out-of-plane
imaging effects which occur when the object
point A lies outside of the principal plane,
though such effects are usually negligible if
the center of the entrance slit lies in this plane
and if the entrance slit dimensions are small
compared with the distance r between the en-
trance slit and the grating center.

Effects of the exit aperture dimen-
sions. The linespread function for a spectral
image, as defined above, depends on the
width of the exit aperture as well as on the
width of the diffracted image itself. In
determining the optimal width of the exit slit
(or single detector element), a rule of thumb
is that the width w” of the exit aperture
should roughly match the width w’ of the
image of the entrance aperture, as explained
below.

Typical linespread curves for the same
diffracted image scanned by three different
exit slit widths are shown in Figure VIII-5.
For simplicity, we have assumed yt = 1 for
these examples. The horizontal axis is
position along the image plane, in the plane
of dispersion. This axis can also be thought
of as a wavelength axis (that is, in spectral
units); the two axes are related via the
dispersion. The vertical axis is relative light
intensity at the image plane; its bottom and
top represent no intensity and total intensity
(or no rays entering the slit and all rays
entering the slit), respectively. Changing the
horizontal codrdinate represents scanning the
monochromatic image by moving the exit slit
across it, in the plane of dispersion. This is
approximately equivalent to changing the
wavelength while keeping the exit slit fixed in
space.

An exit slit less wide than the image (w"
< w’) will result in a linespread graph such as
that seen in Figure VIII-5 (a). In no position
of the exit slit (or, for no diffracted wave-
length) does the totality of diffracted rays fall
within the slit, as it is not wide enough; the
relative intensity does not reach its maximum
value of unity. In (b), the exit slit width
matches the width of the image: w” =w". At
exactly one point during the scan, all of the
diffracted light is contained within the exit
slit; this point is the peak (at a relative inten-
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sity of unity) of the curve. In (c) the exit slit
is wider than the image (w” > w’). The exit
slit contains the entire image for many posi-
tions of the exit slit.

In these figures the quantities FWZH and
FWHM are shown. These are abbreviations
for full width at zero height and full width at
half maximum. The FWZH is simply the
total extent of the linespread function, usually
expressed in spectral units. The FWHM is
the spectral extent between the two extreme
points on the linespread graph which are at
half the maximum value. The FWHM is
often used as a quantitative measure of image
quality in grating systems; it is often called
the effective spectral bandwidth. The FWZH
is sometimes called the full spectral band-
width. It should be noted that the terminol-
ogy is not universal among authors and is
sometimes quite confusing.

As the exit slit width w’ is decreased, the
effective bandwidth will generally decrease.
If w' is roughly equal to the image width w,
though, further reduction of the exit slit width
will not reduce the bandwidth appreciably.
This can be seen in Figure VIII-5, in which
reducing w' from case (c) to case (b) results
in a decrease in the FWHM, but further
reduction of w’ to case (a) does not reduce
the FWHM.

The situation in w” < w'is undesirable in
that diffracted energy is lost (the peak relative
intensity is low) since the exit slit is too
narrow to collect all of the diffracted light at
once. The situation w" > w’ is also undesir-
able, since the FWHM is excessively large
(or, similarly, an excessively wide band of
wavelengths is accepted by the wide slit).
The situation w" = w’ seems optimal: when
the exit slit width matches the width of the
spectral image, the relative intensity is maxi-
mized while the FWHM is minimized. An
interesting curve is shown in Figure VIII-6,
in which the ratio FWHM/FWZH is shown
vs. the ratio w"/w’ for a typical grating sys-
tem. This ratio reaches its single minimum
near w” =w'.



— FWHM ——
FWZH —

Figure VIII-5. Linespread curves for different exit slit
widths. The vertical axis is relative intensity at the
exit aperture, and the horizontal axis is position along
the image plane (in the plane of dispersion). For a
given curve, the dark horizontal line shows the
FWHM (the width of that portion of the curve in
which its amplitude exceeds its half maximum); the
FWZH is the width of the entire curve. (a) w™'< w’;
(b) w"=w’; (c)w"”>w". In (a) the peak is below
unity. In (a) and (b), the FWHM are approximately
equal. Severely aberrated images will yield linespread
curves which differ from those above (in that they
will be asymmetric), although their overall shape will
be similar.

Figure VIII-6. FWHMIFWZI vs. w"Iw' for a typi-
cal system.
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The height of the exit aperture has a more
subtle effect on the imaging properties of the
spectrometer, since by 'height' we mean
extent in the direction perpendicular to the
plane of dispersion. If the exit slit height is
less than the height (sagittal extent) of the
image, some diffracted light will be lost, as it
will not pass through the aperture. Since
diffracted images generally display curvature,
truncating the sagittal extent of the image by
choosing a short exit slit also reduces the
width of the image (see Figure VIII-7). This
latter effect is especially noticeable in
Paschen-Runge mounts.

In this discussion we have ignored the
diffraction effects of the grating aperture: the
comments above consider only the effects of
geometrical optics on instrumental imaging.
For cases in which the entrance and exit slits
are equal in width, and this width is two or
three times the diffraction limit, the linespread
function is approximately Gaussian in shape
rather than the triangle shown in Figure VIII-
5(b).

exit slit

N

W

Figure VIII-7. Effect of exit slit height on image
width. Both the width and the height of the image are
reduced by the exit slit chosen. Even if the width of
the exit slit is greater than the width of the image,
truncating the height of the image yields w™ < w’.
[Only the top half of each image is shown.]
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EFFICIENCY OF DIFFRACTION GRATINGS

X

This chapter is based on LOEWEN et al. [1977].

Efficiency and its variation with wave-
length and spectral order are important char-
acteristics of a diffraction grating. For a re-
flection grating, efficiency is defined as the
intensity of monochromatic light diffracted
into the order being measured, relative either
to the intensity of the incident light (absolute
efficiency) or to the specular reflection from a
polished mirror blank coated with the same
material (relative efficiency). Efficiency is
defined similarly for transmission gratings,
except that an uncoated substrate is used in
the measurement of relative efficiency.

High efficiency gratings are desirable for
several reasons. A grating with high effi-
ciency is more useful than one with lower
efficiency in measuring weak transition lines
in optical spectra. A grating with high effi-
ciency may allow the reflectivity and trans-
missivity specifications for the other compo-
nents in the spectrometer to be relaxed.
Moreover, higher diffracted energy may im-
ply lower instrumental stray light due to other
diffracted orders, as the total intensity leaving
the grating is conserved (being equal to the
light incident on it).

Control over the magnitude and variation
of diffracted energy with wavelength is called
blazing, and it involves the manipulation of
the micro-geometry of the grating grooves.
In the 1888 edition of Encyclopadia Brittan-
ica, Lord Rayleigh recognized that the energy
distribution (by wavelength) of a diffraction
grating could be altered by modifying the
shape of the grating grooves. A few decades
later, R.W. Wood showed this to be true
when he ruled a grating on which he had con-
trolled the groove shape, thereby producing
the first deliberately blazed diffraction
grating.

The choice of an optimal efficiency curve
for a grating depends on the specific applica-
tion. Often the desired instrumental effi-
ciency is linear; that is, the intensity of light
transformed into signal at the image plane
must be constant across the spectrum. To
approach this as closely as possible, the
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spectral emissivity of the light source and the
spectral response of the detector should be
considered, from which the desired grating
efficiency curve can be derived. Usually this
requires peak grating efficiency in the region
of the spectrum where the detectors are least
sensitive; for example, a visible-light spec-
trometer using a silicon detector would be
much less sensitive in the blue than in the
red, suggesting that the grating itself be
blazed to yield a peak efficiency in the blue.

A typical efficiency curve (a plot of
absolute or relative diffracted efficiency vs.
diffracted wavelength 1) is shown in Figure
IX-1. Usually such a curve shows a single
maximum, at the peak wavelength (or blaze
wavelength) Ag. This curve corresponds to a
given diffraction order m; the peak of the
curve decreases in magnitude and shifts
toward shorter wavelengths as |ml increases.
The efficiency curve also depends on the
angles of use (i.e., the angles of incidence
and diffraction). Moreover, the curve
depends on the groove spacing d (more
appropriately, on the dimensionless parame-
ter A/d) and the material with which the grat-
ing is coated (for reflection gratings) or made
(for transmission gratings).

A

Figure IX-1. A typical (simplified) efficiency curve.
This curve shows the efficiency E of a grating in a
given spectral order m, measured vs. the diffracted
wavelength 4. The peak efficiency Ep occurs at the

blaze wavelength Ag.




In many instances the light intensity
diffracted from a grating depends on the
polarization of the incident light. P-plane or
TE polarized light is polarized parallel to the
grating grooves, while S-plane or TM polar-
ized light is polarized perpendicular to the
grating grooves (see Figure 1X-2). For
completely unpolarized incident light, the ef-
ficiency curve will be exactly halfway
between the P and S efficiency curves.

v

P grating

S

Figure IX-2, § and P polarizations The P polariza-
tion components of the incident and diffracted beams
are polarized parallel to the grating grooves; the S
components are polarized perpendicular to the P com-
ponents. Both the S and P components are perpen-
dicular to the propagation directions.

Usually light from a single spectral order
m 1s used in a spectroscopic instrument, So a
grating with ideal efficiency characteristics
would diffract all of the light incident on it
into this order (for the wavelength range con-
sidered). In practice, this is never true: the
distribution of the light diffracted by the
grating depends in a complicated way on the
groove spacing and profile, the spectral or-
der, the wavelength, and the grating material.

Anomalies are locations on an efficiency
curve (efficiency plotted vs. wavelength) at
which the efficiency changes abruptly. First
observed by R. W. Wood, these sharp peaks
and troughs in an efficiency curve are some-
times referred to as Wood's anomalies.
Anomalies are rarely observed in P polariza-
tion efficiency curves, but they are often seen
in S polarization curves (see Figure IX-3).
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Lord Rayleigh predicted the locations (in
the spectrum) where such anomalies would
be found: he suggested that anomalies occur
when light of a given wavelength A’ and
spectral order m’ is diffracted at |8 = 90° from
the grating normal (i.e., it passes over the
grating horizon). For wavelengths 4 < 4/, |l
< 90°, so diffraction is possible in order m’
(and all lower orders), but for 4 > 1’ no
diffraction is possible in order m” (but it is
still possible in lower orders). Thus there is
a discontinuity in the diffracted energy vs. 4
in order m" at wavelength A, and the energy
that would diffract into this order for 4 > 1'1is
redistributed among the other spectral orders.
This causes abrupt changes in the energy
diffracted into these other orders.

A

Figure IX-3. Anomalies in the first order for a typi-
cal grating with triangular grooves. The P efficiency
curve (thick line) is smooth, but anomalies are evi-
dent in the S curve (thin line). The passing-off loca-
tions are identified by their spectral order at the top of
the figure.

The Rayleigh explanation does not cover
the extension towards longer wavelengths,
where anomalies are due to resonance effects.
The position of an anomaly depends to a
slight degree on the optical constants of the
reflecting material of the grating surface.

GRATING EFFICIENCY AND GROOVE
SHAPE

The maximum efficiency of a grating is
typically obtained with a simple smooth tri-



angular groove profile, as shown in Figure
IX-4, when the groove (or blaze) angle 6 is
such that the specular reflection angle for the
angle of incidence is equal (in magnitude and
opposite in sign) to the angle of diffraction.
Ideally, the groove facet should be flat with
smooth straight edges, and be generally free
from irregularities on a scale comparable to
the small fraction (< 1/10) of the wavelength
of light being diffracted.

Fraunhofer was well aware that the dis-
tribution of light among the various diffrac-
tion orders depended on the shape of the
individual grating grooves. Wood, many
decades later, was the first to achieve a
degree of control over the groove shape,
thereby concentrating spectral energy into one
angular region. Wood's gratings were seen
to light up, or 'blaze', when viewed at the
correct angle. The Richardson Grating
Laboratory takes special pride in continuing
its long tradition of advancing the technology
of blazing so that its gratings have
efficiencies near that theoretically attainable.

by mechanical ruling, or by blazing sinu-
soidal groove profiles by ion etching. The
efficiency behavior of gratings with triangular
groove profiles (i.e., blazed gratings) may be
divided into six families, depending on the
blaze angle:

amil blaze angle
very low blaze angle a<5°
low blaze angle 5°<9<10°
medium blaze angle 10°<6<18°
special low anomaly 18°<0<22°
high blaze angle 22°<6<38°
very high blaze angle 6=38°

Very low blaze angle gratings (6 < 5°)
exhibit efficiency behavior which is almost
perfectly scalar; that is, polarization effects

GN

Figure IX-4. Triangular groove geometry. The an-
gles of incidence « and diffraction  are shown in
relation to the facet angle 8 for the blaze condition.
GN is the grating normal and FN is the facet normal.
The facet normal bisects the angle between the inci-
dent and diffracted rays. The blaze arrow (shown)
points from GN to FN,

are virtually nonexistent. In this region, a
simple picture of blazing is applicable, in
which each groove facet can be considered a
simple flat mirror. The diffracted efficiency
is greatest for that wavelength which is
diffracted by the grating in the same direction
as it would be reflected by the facets. This
efficiency peak occurs at A/d = 2 siné
(provided the angle between the incident and
diffracted beams is not excessive). At Ap/2,
where Ap is the blaze wavelength, the
diffracted efficiency will be virtually zero
(Figure 1X-5) since for this wavelength the
second-order efficiency will be at its peak.
Fifty-percent absolute efficiency is obtained

from roughly 0.674g to 1.84g.

Triangular-groove gratings. Grat-
ings with triangular grooves can be generated

os
B2t

o
@

a4t

Absolute Efficiency

0.2t

r T T T T T T T + T T
] 10° 20 30* a0* 50° 60" 90"
First-Order Littrow Diffraction Angle

Figure IX-5. First-order theoretical efficiency curve:
2°blaze angle and Littrow mounting (2K = (). Solid
curve, S-plane; dashed curve, P-plane.




For low blaze angle gratings (5° < 6 <
10°), polarization effects will occur within
their useable range (see Figure IX-6). In
particular, a strong anomaly is seen near A/d
= 2/3. Also observed is the theoretical S-
plane theoretical efficiency peak of 100%
exactly at the nominal blaze, combined with a
P-plane peak which is lower and at a shorter
wavelength. It is characteristic of all P-plane
curves to decrease monotonically from their
peak toward zero as 4/d — 2, beyond which
diffraction is not possible (see Eq. (2-1)).
Even though the wavelength band over which
50% efficiency is attained in unpolarized light
is from 0.674g to 1.84p, gratings of this type
(with 1200 groove per millimeter, for exam-
ple) are widely used, because they most
effectively cover the wavelength range
between 200 and 800 nm (in which most
ultraviolet-visible (UV-Vis) spectrophotome-
ters operate).

Absolute Efficiency

First-Order Littrow Ditfraction Angle

Figure IX-6. Same as Figure IX-5, except 9° blaze

angle.

A typical efficiency curve for a medium
blaze angle grating (10° < 9 < 18°) is shown
in Figure IX-7. As a reminder that for
unpolarized light the efficiency is simply the
arithmetic average of the S- and P-plane effi-
ciencies, such a curve is shown in this figure
only, to keep the other presentations simple.

The low-anomaly blaze angle region (18°
< 6 < 22°) is a special one. Due to the fact
that the strong anomaly that corresponds to
the —1 and +2 orders passing off (A/d = 2/3)
occurs just where these gratings have their
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Figure IX-7. Same as Figure IX-5, except 14° blaze
angle. The curve for unpolarized light (marked U) is
also shown; it lies exactly halfway between the S and
P curves.

peak efficiency, this anomaly ends up being
severely suppressed (Figure IX-8). This
property is quite well maintained over a large
range of angular deviations (the angle
between the incident and diffracted beams),
namely up to 25° but it depends on the
grooves having an apex angle near 90°. The
relatively low P-plane efficiency of this fam-
ily of blazed gratings holds the 50% effi-
ciency band from 0.74g to 1.94p.

Absolute Efficiency

First-Order Littrow Diffraction Angle

Figure IX-8. Same as Figure IX-5, except 19° blaze
angle.

High blaze angle gratings (22° < 9 < 38°)
are widely used, despite the presence of a
very strong anomaly in their efficiency curves
(Figure 1X-9). For unpolarized light, the
effect of this anomaly is greatly attenuated by
its coincidence with the P-plane peak. An-



other method for reducing anomalies for such
gratings is to use them at angular deviations
above 45°, although this involves some
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Figure IX-9. Same as Figure IX-5, except 26° 45°
blaze angle.

sacrifice in efficiency and wavelength range.
The 50% efficiency is theoretically attainable
in the Littrow configuration from 0.64p to
24g, but in practice the long-wavelength end
corresponds to such an extreme angle of
diffraction that instrumental difficulties arise.

Theoretically, all gratings have a second
high-efficiency peak in the S-plane at angles
corresponding to the complement of the blaze
angle (90° — 6); in practice, this peak is fully
developed only on steeper groove-angle grat-
ings, and then only when the steep face of the
groove is not too badly deformed by the
lateral plastic flow inherent in the diamond
tool burnishing process. The strong polariza-
tion observed at all high angles of diffraction
limits the useable efficiency in unpolarized
light, but it makes such gratings very useful
for tuning lasers, especially molecular lasers.
The groove spacing may be chosen so that
the lasing band corresponds to either the first
or second of the S-plane high-efficiency
plateaus. The latter will give at least twice the
dispersion (in fact the maximum possible), as
it is proportional to the tangent of the angle of
diffraction under the Littrow conditions
typical of laser tuning.

Very-high blaze angle gratings (6 = 38°)
are rarely used in the first order; their effi-
ciency curves are interesting only because of
the high P-plane values (Figure IX-10). In
high orders they are often used in tuning dye
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lasers, where high dispersion is important
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Figure IX-10. Same as Figure IX-5, except 46° blaze
angle and 8° and 45° between the incident and
diffracted beams (shown as light and heavy lines,
respectively).

and where tuning through several orders can
cover a wide spectral region with good effi-
ciency. Efficiency curves for this family of
gratings are shown for two configurations.
With an angular deviation of 8°, the efficiency
does not differ too much from Littrow; when
this angle is 45°, the deep groove results in
sharp reductions in efficiency. Some of the
missing energy shows up in the zeroth order,
but some of it can be absorbed by the grating.

Sinusoidal-groove gratings. A
sinusoidal-groove grating can be obtained by
the interferometric (holographic) recording
techniques described in Chapter IV.
Sinusoidal gratings have a somewhat
different diffracted efficiency behavior than
do triangular-groove gratings, and are treated
separately.

It is convenient to consider five domains
of sinusoidal-groove gratings, with progres-
sively increasing modulation u, where

= hid, (9-1)

h is the groove height and d is the groove
spacing:



domain modulation
very low u<0.05
low 005<u<0.15
medium 015 < u £0.25
high 025<u<04
very high u>04

Very low modulation gratings (u < 0.05)
operate in the scalar domain, where the theo-
retical efficiency peak for sinusoidal grooves
is only 33.8% (Figure IX-11). This figure
may be readily scaled, and specification is a
simple matter as soon as it becomes clear that
the peak wavelength always occurs at Ag =
3.4h = 3.4ud. A blazed grating with an
equivalent peak wavelength will require a
groove depth 1.7 times greater.

Absolute Etficiency
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Figure IX-11. First-order theoretical efficiency curve:
sinusoidal grating, 1 = h/d = 0.05 and Littrow mount-
ing (2K = 0). Solid curve, S-plane; dashed curve, P-
plane.

Low modulation gratings (0.05 < u <
0.15) are quite useful in that they have a low
but rather flat efficiency over a A/d band
from 0.35 to 1.4 (Figure IX-12). This figure
includes not only the infinite conductivity
values shown on all previous ones, but
includes the effects of finite conductivity by
adding the curves for an 1800 g/mm alu-
minum surface. The most significant effect is
in the behavior of the anomaly, which is the
typical result of the finite conductivity of real
metals.
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Figure IX-12. First-order theoretical efficiency curve:
sinusoidal grating, aluminum coating, 1800 grooves
per millimeter, u = 0.14 and Littrow mounting.
Solid curves, S-plane; dashed curves, P-plane. For
reference, the curves for a perfectly conducting surface
are shown as well (light curves).

Figure IX-13 is a good example of a
medium modulation grating (0.15 < u <
0.25). It demonstrates an important aspect of
such sinusoidal gratings, namely that rea-
sonable efficiency requirements confine first-
order applications to values of A/d > 0.45,
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Figure IX-13. Same as Figure IX-12, except | =
0.22 and 8° between incident and diffracted beams (2K
=89).

which eliminates them from systems with
wide wavelength ranges. Over this restricted
region, however, efficiencies are comparable
to those of triangular grooves, including the
high degree of polarization. This figure also



demonstrates how a departure from Littrow
to an angular deviation of 8° splits the
anomaly into two branches, corresponding to
the new locations of the —1 and +2 order
passing-off conditions.

High modulation gratings (0.25 < u <
0.40), such as shown in Figure IX-14, have
the maximum useful first-order efficiencies of
sinusoidal-groove gratings. Provided they
are restricted to the domain in which higher
orders diffract (i.e., A/d > 0.65), their effi-
ciencies are very similar to those of triangu-
lar-groove gratings having similar groove
depths (i.e., 26° < 8 < 35°).

Absolute Efficiency
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Figure IX-14. Same as Figure IX-12, except |l =
0.36.

Very-high modulation gratings (u >
0.40), in common with equivalent triangular-
groove gratings, have little application in the
first order due to their relatively low efficien-
cies except perhaps for grazing incidence
applications.

The effects of finite conductivity.
For metal-coated reflection gratings, the finite
conductivity of the metal is of little impor-
tance for wavelengths of diffraction above 4
wm, but the complex nature of the dielectric
constant and the index of refraction begin to
effect efficiency behavior noticeably for
wavelengths below 1 um, and progressively
more so as the wavelength decreases. In the
P-plane, their effect is a simple reduction in
efficiency, in direct proportion to the
reflectance. In the S-plane, the effect is more
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complicated, especially for deeper grooves
and shorter wavelengths.

Figure IX-15 shows the first-order effi-
ciency curve for a widely-used grating: 1200
g/mm, triangular grooves, medium blaze
angle (8 = 10°), coated with aluminum and
used with an angular deviation of 8°. The
finite conductivity of the metal cause a reduc-
tion in efficiency; also, severe modification of
the anomaly is apparent. It is typical that the
anomaly is broadened and shifted toward a
longer wavelength with respect to the infinite
conductivity curve. Even for an angular
deviation as small as 8°, the single anomaly in
the figure is separated into a double anomaly.
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Figure IX-15. First-order theoretical efficiency curve:
triangular-groove grating, aluminum coating, 1200
grooves per millimeter, 10° blaze angle and 2K = 8°.
Solid curves, S-plane; dashed curves, P-plane. For
reference, the curves for a perfectly conducting surface
are shown as well (light curves).

For sinusoidal gratings, the situation is
shown in Figures IX-12 and -14. Figure IX-
13 is interesting in that it clearly shows a se-
ries of new anomalies that are traceable to the
role of aluminum.

With scalar domain gratings (either 8 < 5°
or u < 0.10), the role of finite conductivity is
simply to reduce the efficiency by the ratio of
surface reflectance.

DISTRIBUTION OF ENERGY BY
DIFFRACTION ORDER

Gratings are most often used in higher
diffraction orders to extend the spectral range



of a single grating to shorter wavelengths
than can be covered in lower orders. For
blazed gratings, the second-order peak will
be at one-half the wavelength of the nominal
first-order peak, the third-order peak at one-
third, etc. Since the ratio A/d will be progres-
sively smaller as Iml increases, polarization
effects will become less significant;
anomalies are usually negligible in diffraction
orders for which Iml > 2. Figure IX-16 and
-17 show the second- and third-order heoreti-
cal Littrow efficiencies, respectively, for a
blazed grating with 6 = 26°45'"; they are
plotted as a function of mi/d in order to
demonstrate the proper angular ranges of use.
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Figure IX-16. Second-order theoretical efficiency
curve: 26° 45" blaze angle and Littrow mounting.
Solid curve, S-plane; dashed curve, P-plane.
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Figure IX-17. Same as Figure 1X-16, except third

order,

These curves should be compared with Fig-
ure IX-9 for corresponding first-order be-

havior.
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For gratings with sinusoidally shaped

grooves, higher orders can also be used, but
if efficiency is important, the choice is likely
to be a finer pitch first-order grating instead.
When groove modulations are very low (so
that the grating is used in the scalar domain),
the second-order efficiency curve looks sim-
ilar to Figure IX-18, except that the theoreti-
cal peak value is about 23% (instead of
33.8%) and occurs at a wavelength 0.6 times

that of the first-order peak, which corre-
sponds to 2.054 (instead of 3.41h), where A
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Figure IX-18. Second-order theoretical efficiency
curve: sinusoidal grating, U = 0.36 and Littrow
mounting. Solid curve, S-plane; dashed curve, P-

plane.
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Figure IX-19. Same as Figure IX-18, except third
order.




is the groove depth. Successive higher-order
curves for gratings with sinusoidal grooves
are not only closer together, but drop off
more sharply with order than for gratings
with triangular grooves. For sufficiently
deeply modulated sinusoidal grooves, the
second order can often be used effectively,
though (as Figure IX-18 shows) polarization
effects are relatively strong. The corre-
sponding third-order theoretical curve is
shown in Figure IX-19.

USEFUL WAVELENGTH RANGE

A grating is of little use if high-grade
imaging is not accompanied by sufficient
diffraction efficiency. The laws governing
diffracted efficiency are quite complicated,
but a very rough rule of thumb can be used to
estimate the useful range of wavelengths
available on either side of the blaze (peak)
wavelength for triangular-groove gratings.

For coarse gratings (for which d =2 21), in
the first diffraction order the efficiency is
roughly half its maximum (which is at Ag) at
22p/3 and 34g/2. Curves of similar shape are
obtained in the second and third orders, but
the efficiencies are typically 20% less every-
where, as compared with the first order.

Grating of fine pitch (d = 1) have a
somewhat lower peak efficiency than do
coarse gratings, though the useful wave-
length range is greater.

BLAZING OF RULED TRANSMISSION
GRATINGS

Because they have no metallic overcoat-
ing, triangular-groove transmission gratings
display far simpler efficiency characteristics
than do their ruled counterparts. In particu-
lar, transmission gratings have efficiency
curves almost completely free of polarization
effects.

The peak wavelength generally occurs
when the direction of refraction of the inci-
dent beam through a groove (thought of as a
small prism) equals the direction dictated by
the grating equation. [This is in direct anal-
ogy with the model of reflection grating
blazing in which the grooves are thought of
as small mirrors.] Due to the index of refrac-
tion of the grating, though, the groove angle
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exceeds the blaze angle for a transmission
grating.

BLAZING OF INTERFERENCE REFLEC-
TION GRATINGS

A useful technique for rendering sinu-
soidal groove profiles more nearly triangular
(thus enhancing their efficiency) is ion etch-
ing. By bombarding a surface with energetic
ions, the material can be removed (etched) by
an amount per unit time dependent on the
angle between the beam and the local surface
normal. The etching of a sinusoidal profile
by an ion beam provides a continuously-
varying angle between the ion beam and the
surface normal, which preferentially removes
material at some parts of the profile while
leaving other parts hardly etched. The
surface evolves toward a triangular groove
profile as the ions bombard it.

OVERCOATING OF REFLECTION
GRATINGS

All standard reflection gratings are
furnished with an aluminum (Al) reflecting
surface. While no other metal has more
general application, there are a number of
special situations where alternative surfaces
or coatings are recommended.

The metallic coating on a reflection
grating is evaporated onto the blank. This
produces a surface whose reflectivity is
higher than that of the same metal electro-
plated onto the grating surface. The thick-
ness of the metallic layer is chosen to enhance
the diffraction efficiency throughout the
spectral region of interest.

The reflectivity of aluminum drops rather
sharply for wavelengths below 170 nm.
While freshly deposited, fast-fired pure alu-
minum in high vacuum maintains its reflec-
tivity to wavelengths shorter than 100 nm,
the thin layer of oxide normally present
absorbs wavelengths below about 170 nm.

Fortunately, a method developed in the
late 1950s makes it possible to preserve the
reflectivity of aluminum to shorter wave-
lengths. The process involves overcoating
the grating with a thin layer of fast-fired alu-
minum, which is followed immediately by a
coating of magnesium fluoride (MgF;)



approximately 25 nm thick; the grating is kept
at room temperature for both coatings. The
main purpose of the MgF, coating is to pro-
tect the aluminum from exidation. The
advantage of this coating is especially marked
in the region between 120 and 170 nm.
While reflectivity drops off sharply below
this region, it remains higher than that of gold
and comparable to that of platinum, the most
commonly used alternative materials, down
to 70 nm.

On an experimental basis, the use of
lithium fluoride (LiF) instead of MgF, has
proved effective in maintaining relatively high
reflectivity in the 100 to 110 nm region. Un-
fortunately, a LiF film deteriorates unless
maintained in a low humidity environment,
which has curtailed practical exploitations,
though it can be protected by a very thin layer
of MgF,.

Gratings coated with gold (Au) and plat-
inum (Pt) have been used for some time.
Gold gratings have the great advantage that
they can be replicated directly from either
gold or aluminum master gratings, and are
therefore most likely to maintain their groove
profiles.

Overcoating gratings so that their surfaces
are coated with two layers of different metals
sometimes leads to a change in diffraction
efficiency over time. HUNTER et al. [1972]
have found the cause of this change to be
intermetallic diffusion. For example, they
measured a drastic decrease (over time) in
efficiency at 122 nm for gratings coated in Au
and then overcoated in Al + MgF,; this
decrease was attributed to the formation of
intermetallic compounds, primarily AuAl;
and AupAl. Placing a suitable dielectric layer
such as SiO between the two metallic layers
prevents this diffusion.

As mentioned elsewhere, fingerprints are
a danger to aluminized optics. It is possible
to overcoat such optics, both gratings and
mirrors, with dielectrics like MgF,, to pre-
vent finger acids from attacking the alu-
minum. These MgF; coatings cannot be
baked, as is customary for glass optics, and
therefore must not be cleaned with water.
Spectrographic-grade organic solvents are the
only recommended cleaning agents, and they
should be used sparingly and with care.

Multilayer dielectric overcoatings, which
are so useful in enhancing plane mirror sur-
faces, are of little value on a typical diffrac-
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tion grating used in the visible and infrared
spectra, as these coatings lead to complex
guided wave effects that are rarely useful.
For wavelengths below 30 nm, though, in
which grazing angles of incidence and
diffraction are common, multilayer coatings
can enhance efficiency considerably [RIFE et
al. 1989].



TESTING AND

CHARACTERIZATION X

OF GRATINGS

SPECTRAL DEFECTS

It is fundamental to the nature of diffrac-
tion gratings that errors are relatively easy to
measure, although not all attributes are
equally detectable or sometimes even
definable.

For example, an optically clean grating,
i.e., one with low background in the form of
scatter or satellites, can be simply tested for
Rowland ghosts on an optical bench. With a
mercury lamp or a laser source, and a scan-
ning slit connected to a detector and recorder,
a ghost having intensity 0.002% of the inten-
sity of the main line can be readily located.
The periodic error in the groove spacing giv-
ing rise to such a ghost may be less than one
nanometer, a mechanical precision seldom
achieved with man-made machines.

Grating ghosts are measured at the
Richardson Grating Laboratory by making
the grating part of a scanning spectrometer
and illuminating it with monochromatic light,
such as that from a mercury isotope lamp
(isotope 198 or 202) or a helium-neon laser.
On scanning both sides of the parent line,
using a chart recorder and calibrated attenua-
tors, it is easy to identify all ghost lines and
to measure their intensities relative to the par-
ent line. The importance of ghosts in grating
applications varies considerably. In most
spectrophotometers, and in work with low-
intensity sources, ghosts play a negligible
role. In Raman spectroscopy, however, even
the weakest ghost may appear to be a Raman
line, especially when investigating solid sam-
ples, and hence these ghosts must be
suppressed to truly negligible values.

Ghosts are usually classified as Rowland
ghosts and Lyman ghosts. Another grating
deficiency is the presence of satellites; if
excessive, satellites lying within a line con-
tour may reduce the attainable resolution, and
hence are of great concern in high resolution
spectroscopy. Satellites should be at a mini-
mum for Raman spectroscopy.
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Rowland Ghosts. Rowland ghosts
are spurious lines seen in some grating spec-
tra that result from periodic errors in the
spacing of the grooves. These lines are usu-
ally located symmetrically with respect to
each strong spectral line at a spectral distance
from it which depends on the period of the
error, and with an intensity which depends
on the amplitude of this error.

If the curve of groove spacing error vs.
position is not simply sinusoidal, there will
be a number of ghosts on each side of the
parent line representing the various orders
from each of the harmonics of the error
curve. On engines with mechanical drives,
Rowland ghosts are associated primarily with
errors in the lead or pitch of the precision
screw, or with the bearings that hold the
screw in place. As a consequence, their
location depends upon the number of grooves
ruled for each complete turn of the screw.
For example, if the ruling engine has a pitch
of 2 mm, and a ruling is made at 1200
grooves/mm, 2400 grooves will be ruled per
turn of the screw, and the ghosts in the first
order can be expected to lie at AA = + /2400
from the parent line 4, with additional ghosts
located at integral multiples of AA. In grat-
ings ruled on engines with interferometric
feedback correction mechanisms, Rowland
ghosts are usually much less intense, but they
can arise from the mechanisms used in the
correction system if care is not taken to
prevent their occurrence.

If the character of the periodic errors in a
ruling engine were simply harmonic, which
is rarely true in practice, the ratio of the
diffracted intensities of the first order
Rowland ghost (/rg (s = 1)) to that of the
parent line (/pp) is

(10-1)

IRG =1 _, (nA sino:)2
I
where A is the peak simple harmonic error

amplitude, « is the angle of incidence, and 4
is the diffracted wavelength. The second-



order Rowland ghost will be much less
intense:

(10-2)

IRG(m=2 _ 4 (nA sina)“_
Im

Higher-order Rowland ghosts would be vir-
tually invisible. The ghost intensity is inde-
pendent of the diffraction order m of the par-
ent line, and of the groove spacing d. In the
Littrow configuration, Eq. (10-1) becomes

, in Littrow, (10-3)

IRG (m=1) =(:r|:mA)2
I d

an expression derived in 1893 by Rowland.

These simple mathematical formule do
not always apply in practice when describing
higher-order ghost intensities, since the har-
monic content of actual error curves gives
rise to complex amplitudes that must be
added vectorially and then squared to obtain
intensity functions. A fortunate result of this
is that ghost intensities are generally smaller
than those predicted from the peak error am-
plitude.

The order of magnitude of the funda-
mental harmonic error amplitude can be de-
rived from Eq. (10-1) [or Eq. (10-3)]. For
example, a 1200 g/mm grating used in the m
= 1 order in Littrow will show a 0.14% first-
order ghost intensity, compared with the par-
ent line, for a fundamental harmonic error
amplitude of 10 nm. For some applications
this intensity is unacceptably high, which
illustrates the importance of making a con-
certed effort to minimize periodic errors of
ruling. For Raman gratings and echelles, the
amplitude of the periodic error must not ex-
ceed one nanometer; the fact that this has
been accomplished is a remarkable achieve-
ment.

Lyman Ghosts. Ghost lines observed
at large spectral distances from their parent
lines are called Lyman ghosts. They result
from compounded periodic errors in the
spacing of the grating grooves. Lyman
ghosts differ from Rowland ghosts in that
each period of Lyman ghosts contains rela-
tively few grooves. Lyman ghosts can be
said to be in fractional-order positions.
Thus, if every other groove is misplaced so
that the period contains just two grooves,
ghosts are seen in the half-order positions.
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The number of grooves per period determines
the fractional-order position of Lyman
ghosts. Usually it is possible to find the ori-
gin of the error in the ruling engine once its
periodicity is determined. It is important that
Lyman ghosts be kept to a minimum, because
they are not nearly as easy to identify as
Rowland ghosts.

Satellites. Satellites are false spectral
lines usually occurring very close to the par-
ent line. Individual gratings vary greatly in
the number and intensity of satellites which
they produce. In a poor grating, they give
rise to much scattered light, referred to as
grass (so called since this low intensity scat-
tered light appears like a strip of lawn when
viewed with green mercury light). Satellites
are absent in a "clean" grating. In contrast to
Rowland ghosts, which usually arise from
errors extending over large areas of the grat-
ing, each satellite usually originates from a
small number of randomly misplaced grooves
in a localized part of the grating. With laser
illumination a relative background intensity of
107 is easily observable with the eye.

EFFICIENCY MEASUREMENT

In our laboratory, grating efficiency mea-
surements are performed with a double
monochromator system. The first mono-
chromator supplies monochromatic light
derived from a tungsten lamp, mercury arc or
deuterium lamp, depending on the spectral
region involved. The grating being tested
serves as the dispersing element in the second
monochromator. In the normal mode of
operation, the output is compared with that
from a high grade mirror coated with the
same material as the grating. The efficiency
of the grating relative to that of the mirror is
reported (relative efficiency), although abso-
lute efficiency values can also be obtained
(either by direct measurement or through
knowledge of the variation of mirror re-
flectivity with wavelength). For plane reflec-
tion gratings, the wavelength region covered
is usually 190 nm to 2.50 pm; gratings
blazed farther into the infrared are measured
in higher orders. Concave reflection gratings
focus as well as disperse the light, so the
entrance and exit slits of the second
monochromator are placed at the positions for
which the grating was designed (that is, con-
cave grating efficiencies are measured in the



geometry in which the gratings are to be
used). Transmission gratings are tested on
the same equipment, with values given as the
ratio of diffracted light to light falling directly
on the detector, (i.e., absolute efficiency).

A vacuum ultraviolet monochromator is
available for testing plane and concave grat-
ings, as well as mirrors, from 58.4 to 250
nm, for absolute and relative efficiency.

Curves of efficiency vs. wavelength for
plane gratings are made routinely on all new
master gratings, both plane and concave,
with light polarized in the S and P planes to
assess the presence and amplitudes (if any) of
anomalies. Such curves are furnished on
request.

FOUCAULT KNIFE-EDGE TEST

One of the most critical tests an optical
system can undergo is the Foucault knife-
edge test. This test not only reveals a great
deal about wavefront deficiencies but also lo-
cates specific areas (or zones) where they
originate. The test is suited equally well to
plane and concave gratings (for the former,
the use of very high grade collimating optics
is required). The sensitivity of the test
depends on the radius of the concave grating
(or the focal length of the collimating
system), and may easily exceed that of inter-
ferometric testing, although the latter is more
quantitative.

By setting on ghost wavelengths, it is
easy to see from which areas of the grating
they originate. Errors of run, which are pro-
gressive changes in the groove spacing
across the surface of the grating, are quite
apparent to the practiced observer. This is
also true of fanning error, which results
when the groove spacing at the top of the
grating differs from that at the bottom
(resulting in a fan-shaped groove pattern).
The sharper its knife-edge cutoff, the more
likely that a grating will yield high resolution.

The Foucault test is a sensitive and pow-
erful tool, but experience is required to inter-
pret each effect that it makes evident. All
Grating Laboratory master plane gratings,
large plane replicas and large-radius concave
gratings are checked by this method.
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DIRECT WAVEFRONT TESTING

Any departure from perfect flatness of a
plane grating, or perfect sphericity of a con-
cave grating, as well as variations in the
groove spacing, depth or parallelism, will
result in a diffracted wavefront which is less
than perfect. According to the Rayleigh crite-
rion, resolution is lost whenever the de-
ficiency exceeds A/4, where A1is the wave-
length of the light used in the test. To obtain
an understanding of the magnitudes involved,
it is necessary to consider the angle at which
the grating is used. For simplicity, consider
this to be the blaze angle, under Littrow con-
ditions. Any surface figure error of height A
will cause a wavefront deformation of 2a
cosf, which decreases with increasing 16. On
the other hand, a groove position error p
introduces a wavefront error of 2p sing,
which explains why ruling parameters are
more critical for gratings used in high-angle
configurations.

A plane grating may produce a slightly
cylindrical wavefront if the groove spacing
changes linearly, or if the surface figure is
similarly deformed. In this special case, res-
olution is maintained, but focal distance will
vary with wavelength.

Wavefront testing can be done conve-
niently by mounting a grating at its autocolli-
mating angle (Littrow) in a Twyman-Green
interferometer. Few such instruments exist
that combine sufficiently high quality with
large aperture. The Richardson Grating
Laboratory instrument has an aperture of 150
mm (6 inch). With coherent laser light
sources, however, it is possible to make the
same measurements with a much simpler
Fizeau interferometer, equipped with com-
puter fringe analysis.

Periodic errors show up as zig-zag fringe
displacements. A sudden change in groove
position gives rise to a step in the fringe pat-
tern; in the spectrum, this is likely to appear
as a satellite. Curved fringes due to progres-
sive ruling error can be distinguished from
figure problems by observing fringes
obtained in zero, first and higher orders.
Fanning error (non-parallel grooves) will
cause spreading fringes.

Experience has shown that the sensitivity
of standard interferograms for grating defi-
ciencies equals or exceeds that of other plane
grating testing methods only for gratings



used at high angles. This is why the interfer-
ometric test is especially appropriate for the
testing of echelles and other gratings used in
high diffraction orders.

SCATTERED LIGHT

As discussed in chapter II, the composite
of misplaced spectral energy is called stray
light or scattered light. Near scatter is usually
due to large numbers of satellites and ghosts;
far scatter is due to every kind of groove po-
sition error as well as geometrical deficiencies
such as the smoothness of the grooves and
the edge effects at each groove. Such defi-
ciencies show up more at shorter wave-
lengths as mechanical imperfections become
large relative to the wavelength.

The practical importance of stray light
depends on the specific application of the
grating. In some cases, filters (or their
equivalent in the form of narrow range
detectors) can play an important role in
suppressing the effects of stray light.
Another method is to use double monochro-
mators or crossed dispersion.

Measurement methods used to determine
far scatter depend on filters to mask parts of
the spectrum. Ratios of radiometric readings
made with and without the filters serve as a
measure of scattered light. The approach,
while functional, is arbitrary, with results
affected by the diffraction efficiency of the
grating, the spectrometric system used, the
light source, and the spectral response of the
detecting system. Definition and subsequent
measurement of far scatter is an active field of
research.

The Richardson Grating Laboratory has a
special apparatus to examine light scattered
by small regions on the surface of a mirror or
grating. This "scatter checker" provides
several degrees of freedom, so that light
scattered by a grating between diffraction
orders can be attributed to areas on its
surface. The scatter checker can also illumi-
nate the entire grating, so that total grating
stray light can be measured.
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SELECTION OF DISPERSING SYSTEMS

Xl

REFLECTION GRATING SYSTEMS

Reflection grating systems are much more
common than transmission grating systems.
Optical systems can be 'folded" with reflec-
tion gratings, which reflect as well as
disperse, whereas transmission grating
systems are 'in-line' and therefore usually of
greater length. Moreover, reflection gratings
are not limited by the transmission properties
of the grating substrate (or resin), and can
operate at much higher angles of diffraction.

Plane reflection grating systems.
The choice of existing plane reflection
gratings is extensive and continually increas-
ing. Sizes as large as 12 x 16 inches (about
300 x 400 mm) have been ruled. For
infrared spectra, plane reflection gratings are
most suitable because of the availability of
large gratings. While plane gratings have
been used for visible and ultraviolet spectra
for some time, they are also used increasingly
for wavelengths as short as 110 nm, an
extension made possible by special over-
coatings that give satisfactory reflectivity
even at such short wavelengths (see chapter
IX).

The most popular arrangement for plane
reflection gratings is the Czerny-Turner
mount, which uses two spherical concave
mirrors between the grating and the entrance
and exit slits. A single mirror arrangement
(the Ebert-Fastie mount) can also be used.
Both achieve spectral scanning through rota-
tion of the grating. Collimating lenses are
rarely used, since mirrors are inherently
achromatic.

For special purposes, plane reflection
gratings can be made on unusual materials,
such as ceramics or metals, given special
shapes, or supplied with holes for Cassegrain
and Coudé-type telescopic systems.

Concave reflection grating sys-
tems. The great advantage in using concave
gratings lies in the fact that separate colli-
mating optics are unnecessary. This is par-
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ticularly important in the far vacuum ultra-
violet region of the spectrum, for which there
are no good reflectors. Two mirrors, each
reflecting 20%, will reduce throughput by a
factor of twenty-five. Hence, concave
systems dominate the entire ultraviolet re-
gion, and at wavelengths less than 110 nm
are used exclusively. Their chief deficiency
lies in astigmatism, which limits the exit slit
size (and, consequently, the energy through-
put). The situation can be improved by using
toroidal grating blanks; however, their use is
restricted because of high costs.

Though most ruled gratings are flat,
curved substrates can be ruled as well if their
curvatures are not extreme (c. f/9 or greater).
Concave gratings are not only more difficult
to rule than plane gratings, since the tool
must swing through an arc as it crosses the
blank, but they require extremely tight control
over the sphericity to the blank as well.
Since each radius of curvature is a new
parameter, there cannot be the large selection
of rulings (in size and blaze angle) for any
one given radius that there is with plane
gratings.

Another limitation of ruled concave grat-
ings appears when they are ruled at shallow
groove angles. The ruled width is unfortu-
nately limited by the radius of the blank,
since the diamond cannot rule useful grooves
when the slope angle of the blank exceeds the
blaze angle. The automatic energy limitation
that is thereby imposed can be overcome by
ruling multipartite gratings, a Richardson
Grating Laboratory development. Here the
ruling is interrupted once or twice, so the tool
can be reset at a different angle. The
resulting bipartite or tripartite gratings are
very useful, as available energy is otherwise
low in the short wavelength regions. One
must not expect such gratings to have a
resolving power in excess of that of any
single section, for such an achievement
would require phase matching to a degree that
is beyond the present state of the art.

The advent of the interference
(holographic) method of generating gratings
has made the manufacture of concave
gratings commonplace. Since the fringe



pattern formed during the recording process
is three-dimensional, a curved blank placed in

this pattern will record fringes. Unlike ruled
gratings, concave interference gratings can be
generated on blanks whose radii are smaller
than 100 mm.

TRANSMISSION GRATING SYSTEMS

In certain types of instrumentation,
transmission gratings are much more conve-
nient to use than reflection gratings. The
most common configuration involves
converting cameras into simple spectrographs
by inserting a grating in front of the lens.
These are used particularly for studying the
composition of falling meteors or the re-entry
of space vehicles, where the distant luminous
streak becomes the entrance slit. Another
application where high-speed lenses and
transmission gratings can be combined
advantageously is in the determination of
spectral sensitivity of photographic emul-
sions.

Transmission gratings can be made by
stripping the aluminum film from the surface
of a reflection grating. However, since the
blank is now part of the imaging optics, spe-
cial blanks are used, made to tighter specifi-
cations for parallelism, and those used in the
visible region are given a magnesium fluoride
(MgF,) antireflection coating on the back to
reduce light loss and internal reflections.

In most cases, relatively coarse gratings
are preferred, although gratings up to 600
g/mm are furnished routinely. Experimen-
tally, transmission gratings of 1200 g/mm
have been used. Energy distribution on
either side of the blaze peak is very similar to
that of reflection gratings in the scalar
domain. For wavelengths between 220 and
300 nm, transmission gratings are made on
fused silica blanks with a special resin capa-
ble of high transmission for these wave-
lengths.

Since transmission gratings do not have a
delicate metal film they are much more readily
cleaned. However, they are limited to
spectral regions where blanks and resins
transmit, but their main drawback is that they
do not fold the optical path conveniently as a
reflection grating does. Moreover, to avoid
total internal reflection, their diffraction
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angles cannot be extreme. Even though the
blank surface is antireflection coated, internal
reflections from the grating-air interface leads
to some back reflection in several orders; this
limits the maximum efficiency to 85% or
less.

GRATING PRISMS (GRISMS)

For certain applications, such as a direct
vision spectroscope, it is very useful to have
a dispersing element that will provide in-line
viewing for one wavelength. This can be
done by replicating a transmission grating
onto the hypotenuse face of a right-angle
prism. The light diffracted by the grating is
bent back in-line by the refracting effect of
the prism. The device is commonly called a
Carpenter prism or grism.

The derivation of the formula for
computing the required prism angle follows
(refer to Figure XI-1). On introducing
Snell's law, the grating equation becomes

mA = d (n sina + n’ sinfj), (11-1)
where n and n’ are the refractive indices of
glass and air, respectively, and g <0 since
the diffracted ray lies on the opposite side of
the normal from the incident rays (a > 0).

Figure XI-1. Grating prism (grism). Ray path for
straight-through operation at one wavelength.




Taking n’ = 1 for air, and setting a =—f = ¢,
the prism angle, Eq. (10-1) becomes

mA=d (n-1) sing . (11-2)
In this derivation it is assumed that the
refractive index n of the glass is the same (or
very nearly the same) as the index ng of the
epoxy resin at the straight-through wave-

length A. While this is not likely to be true,
the resulting error is often quite small.

The dispersion of a grating prism cannot

be linear, owing to the fact that the dispersive
effects of the prism are superimposed on
those of the grating. The following steps are
useful in designing a grism:

1. Select the prism material desired
(e.g., BK-7 glass for visible light or
fused silica for ultraviolet light).

2. Obtain the index of refraction of the
prism material for the straight-through
wavelength.

3. Select the grating constant d for the
appropriate dispersion desired.

4. Determine the prism angle ¢ from Eq.
(11-2).

5. For maximum efficiency in the
straight-through direction, select the
grating from the catalogue with
groove angle 0 closest to ¢.

GRAZING INCIDENCE SYSTEMS

For work in the x-ray region (1 to 25
nm), the need for high dispersion and the
normally low reflectivity of materials both
demand that concave gratings be used at
grazing incidence (i.e., lal > 80°, measured
from the grating normal). Groove spacings
of 600 to 1200 per millimeter are very ef-
fective, but exceptional groove smoothness is
required on these rulings to achieve good
results.

ECHELLES

A need has long existed for spectroscopic
devices that give higher resolution and dis-
persion than ordinary gratings, but with a
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greater free spectral range than a Fabry-Perot
¢talon or a reflection echelon. This gap is
admirably filled by the echelle grating, first
suggested by Harrison. Physically, an
echelle can be thought of as lying halfway
between a grating and a reflection echelon.
The echelon is so difficult to make, and has
such a low free spectral range, that it is now
little more than a textbook curiosity.
Echelles, on the other hand, are becoming
ever more popular tools as large high quality
rulings become available. In particular, they
lead to compact instruments with high
reciprocal dispersion and high throughput.

Echelles are a special class of high-angle
gratings, rarely used in orders below lml =5,
and sometimes used in orders beyond 100.
Because of order overlap, some type of
filtering is normally required with higher-
order grating systems. This can take several
forms, such as cutoff filters, detectors
insensitive to longer wavelengths, or cross-
dispersion in the form of prisms or low-
dispersion gratings. The latter approach
leads to a square display format suitable for
corresponding types of array detectors. In
the case of dye laser tuning, the filtering is
performed effectively by the choice of dyes.

GN

Figure XI-2. Echelle geometry. The groove spacing
d, step width ¢ and step height s are shown. GN is
the grating normal and FN is the facet normal. The
blaze arrow (shown) points from GN to FN,

As seen in Fig XI-2, an echelle looks like
a coarse grating used at such a high angle
(typically 63° from the normal) that the steep
side of the groove becomes the optically
active facet. Typical echelle groove spacings



are 31.6, 79 and 316 g/mm, all blazed at
63°26' (although 76° is available for greater
dispersion). With these grating, resolving
powers greater than 1 000 000 for near-UV
wavelengths can be obtained, using an
echelle 10 inches wide. Correspondingly
high values can be obtained throughout the
visible spectrum and to 20 pm in the infrared.
Since echelles always operate close to the
Littrow mode, the grating equation becomes

mA = 2d sinff = 2d sin6 = 2t, (11-3)
where f is the angle of diffraction, @ the
groove (blaze) angle, and ¢ is the width of
one echelle step (see Fig XI-2).

The free spectral range is

Fy = Am. (2-23)
From Figure XI-2, m = 2t/4, so
F, = A2/21 (11-4)

for an echelle used in Littrow. In terms of
wavenumbers, the free spectral range is
Fo=AMA2 = 1/2t. (11-5)

The linear dispersion of the spectrum is,
from Eq. (2-12),

_mr _mr’_ﬁ'2f)

rt=——=—=——|
dA dcosp § S\A

(11-6)
where s = d cosp is the step height of the
echelle groove (see Fig. XI-2). The useful
length [ of spectrum between two consecutive
diffraction orders is equal to the product of
the linear dispersion and the free spectral
range:

l=r'Als. (11-7)
For example, consider a 300 g/mm echelle
with a step height s = 6.5 um, combined with
an r’ = 1.0 meter focal length mirror,
working at a wavelength of 500 nm. The
useful length of one free spectral range of the
spectrum is 77 mm.

Typically, the spectral efficiency reaches
a peak in the center of each free spectral
range, and drops to about half of this value at
the ends of the range. An echelle remains
blazed for all wavelengths in the free spectral
range (for a given diffraction order).
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The steep angles and the correspondingly
high orders at which echelles are used makes
their ruling much more difficult than ordinary
gratings. Periodic errors of ruling must
especially be limited to a few nanometers or
even less, which is attainable only by using
interferometric control of the ruling engine.
The task is made even more difficult by the
fact that the coarse, deep grooves require
heavy loads on the diamond tool. Only rul-
ing engines of exceptional rigidity can hope
to rule echelles. This also explains why the
problems escalate as the groove spacing
increases.

Echelles are often referred to by their "R
numbers”. This number is the tangent of the
blaze angle 6:

R number = tan@ = t/s (11-8)

(see Figure XI-2). An R2 echelle, for exam-
ple, has a blaze angle of 63°.



GRATINGS FOR SPECIAL PURPOSES X[

ASTRONOMICAL GRATINGS

Large gratings for astronomical purposes
were formerly available only by ruling two
adjacent sections. In 1972, the 'B' engine
was modified to rule larger areas with a
single diamond, and since then it has
produced echelles and large gratings up to
308 mm x 408 mm in size. Even larger
gratings can be achieved by high accuracy
multiple replication onto a single blank.

FILTER GRATINGS

It is frequently desirable to use diffraction
gratings as reflectance filters when working
in the far infrared, in order to remove the
unwanted second- and higher- diffraction
orders from the light. For this purpose,
small plane gratings are used that are blazed
for the wavelength of the unwanted shorter-
wavelength radiation. The grating acts as a
mirror, reflecting the desired light into the
instrument while diffracting shorter wave-
lengths out of the beam.

GRATINGS FOR ELECTRON MICRO-
SCOPE CALIBRATION

It is possible to make shadow-cast repli-
cas from replica gratings that can be very
useful for calibrating the magnification of
electron microscopes. These are replica
gratings made from lightly ruled master grat-
ings so that a space is left between the
grooves. Besides offering this type of grat-
ing with a wvariety of spacings, the
Richardson Grating Laboratory can also rule
gratings with two sets of grooves at right
angles (cross-rulings), which forms a grid
that will show distortion of the field in the
electron microscope. Groove frequencies as
high as 10 000 grooves per millimeter have
been produced experimentally.
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GRATINGS FOR LASER TUNING

External-cavity semiconductor diode
lasers are often used for their single-mode
operation and spectral tunability. Plane
reflection gratings can be used in the Littrow
configuration to tune the lasing wavelength,
as shown in Fig. XII-1, or in the grazing-
incidence mount. In some systems a tele-
scope is used to expand the laser beam to fill
the grating, which is necessary for high
resolution. A set of prisms, though, can do
the same job more simply. Grazing-inci-
dence tuning with one grating associated with
a mirror or a second grating can also be used
to tune dye lasers.

G CL LC
Vv
/
Figure XII-1. Littrow tuning of a dye laser. Light from
the laser cavity [LC] diverges toward the collimating
lens [CL], which directs it toward the grating [G], which
is oriented so that light of the power wavelength is

redirected back toward the lens, which focuses it into the
laser cavity.

Molecular lasers, operating in either a
pulsed or continuous-wave (cw) mode, have
their output wavelength tuned by Littrow-
mounted gratings. High efficiency is
obtained by using the first diffraction order at
diffraction angles I8l > 20°. The output is
polarized in the S-plane, since the efficiency
in the P plane is quite low.

Some molecular lasers operate at powers
high enough to destroy gratings. For pulsed
laser tuning, extra-thick replica films may
help, but at maximum power only master
gratings survive. Due to their far greater
thermal conductivity, replica gratings on
metal blanks are superior to glass for cw laser
applications; in some cases, the grating



blanks must be water-cooled to prevent
failure.

GRATINGS AS BEAM DIVIDERS

Gratings ruled with symmetrical V-
shaped grooves, as well as laminar transmis-
sion gratings, are capable of being used as
beam dividers in conjunction with Moiré
fringe applications or interferometers. A
diffraction grating used as a beam divider
provides higher efficiencies when its groove
profile is rectangular, whereas a grating used
for spectroscopic purposes should have a
sinusoidal or triangular groove profile.

SPACE-BORNE SPECTROMETRY

Neither master nor replica blanks suffer
in any measurable way over extended periods
of time in a space environment. The advan-
tage of replicas lies not only in their greater
availability and lower cost, but in making
possible the provision of exact duplicates
whenever needed.

Since most space work involves the study
of ultraviolet (UV) and extreme ultraviolet
(XUV) wavelengths, special problems exist
in setting and aligning the optics. For this
purpose the Grating Laboratory can rule
gratings matching the XUV grating but with a
groove spacing modified so that the mercury
546.1-nm line lies in the spectrum just where
the main wavelength under study will lie.
Another possibility is to rule a small section
on the main grating with similar coarse
spacings and then mask off this area when
the alignment is complete. Sometimes special
tolerances on blank radii are required for
complete interchangeability.

SPECIAL GRATINGS

Usually some of the standard gratings
offered in the latest Grating Catalog will
satisfy a customer's requirements for groove
spacing and blaze angle.

Blank size. Grating size is usually
dictated by the light throughput desired (and,
in the case of concave gratings, imaging and
instrument size limitations as well). Should
none of the standard blank sizes listed in the
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Catalog be suitable to match an instrument
design, these same gratings can be supplied
on special size blanks. Special elongated
blank shapes are available for echelles and
laser tuning gratings.

Blank material. The standard material for
small and medium-sized grating blanks is
specially annealed boro-silicate crown glass
(BK-7). Low-expansion material, such as
Zero-Dur® or fused silica, can be supplied
upon request. For large gratings
(approximately 135 x 265 mm or larger),
low-expansion material is standard; BK-7 can
be requested as well. For certain appli-
cations, it is possible to furnish metal
substrates (e.g., copper or aluminum) that are
good heat sinks.

Blank coatings. While evaporated alu-
minum is the standard coating for reflection
gratings, fast-fired aluminum with overcoat-
ings of magnesium fluoride (MgF2) can be
used to enhance efficiency in the spectrum
between 120 and 160 nm. For the extreme
ultraviolet (below 50 nm), gold replica grat-
ings are recommended, while platinum is
recommended for 80-110 nm. Gold replicas
also have higher reflectivity in most regions
of the infrared spectrum.



ADVICE TO GRATING USERS XL

CHOOSING A SPECIFIC GRATING

If a diffraction grating is to be used only
to disperse light (rather than provide focusing
as well), then choosing the proper grating is
often a simple matter involving the specifi-
cation of the blaze angle and groove spacing.
In other instances, the problem is one of
deciding on the spectrometric system itself.
The main parameters that must be specified
are

Spectral region (wavelength range)
Speed (focal ratio) or throughput
Resolution or resolving power
Dispersion
Free spectral range
Output optics
Size limitations

To these should be added the question of
whether an innovative design is required.

The spectral region will usually dictate the
choice of plane vs. concave design, as well
as the coating (if the grating is reflecting).
Imaging (or spectral resolution) requirements
and dispersion are also of primary impor-
tance. The size and weight of the system, the
method of receiving output data, the inten-
sity, polarization and spectral distribution of
the energy available, etc., must also be con-
sidered. The nature of the detection system,
especially for array detectors, plays a major
role in system design: its size, resolution, and
image field flatness are critical issues in the
specification of the optical system.

Resolving power depends on many
aspects of the optical system and the quality
of its components. In some cases, the grat-
ing may be the limiting component. The
decision here involves the size of the grating
and the angle at which it is to be used, but not
on the number of grooves on the grating or
the groove spacing (see chapter II).

Speed (or throughput) determines the
focal length as well as the sizes of the optical
elements and of the system itself. Special

61

overcoatings become important in certain
regions of the spectrum, especially the vac-
uum ultraviolet. For example, Al + MgF; is
advisable in the 100-170 nm region, and Au
and Pt in the 30-110 nm region.

There are other criteria, such as imaging
(e.g., astigmatism), magnification and ther-
mal stability. When thermal stability is
important, gratings should be made on a low
expansion material, such as ZeroDur™ or
ULE® fused silica.

CARE IN HANDLING GRATINGS

Most diffraction gratings have an alu-
minum coating on the active surface, because
no other material reflects so well over so
much of the electromagnetic spectrum.
Unfortunately this makes gratings as vulnera-
ble as unprotected first-surface mirrors (but
no more so), and they should be treated
accordingly. Every effort should be made to
avoid the two worst enemies of such
surfaces: fingerprints and oral spray. Scrub-
bing is not permissible and even gentle swab-
bing under a liquid should be performed by
an expert. If fingerprints are accidentally
deposited on a ruling, they should be
removed immediately by rinsing from a
squeeze bottle containing spectroscopic-grade
solvents, such as xylene or toluene. Even
CP grades of solvent should not be used, as
they may leave residues. A final rinse with
isopropyl alcohol is recommended.

As the surface of a diffraction grating is
delicate, the grating must be unpacked with
care to avoid accidental scratching, and
should be stored in the same type of envi-
ronment as the instrument in which they will
be used.

GRATING CLEANING SERVICE

The Richardson Grating Laboratory
offers a cleaning service for contaminated
gratings. Solvent cleaning is the traditional
manner in which grating surfaces are cleaned,



though plasma-cleaning in an oxygen
atmosphere has been shown to remove thin
radiation-induced deposits. Cleaning optical
surfaces with a jet of carbon dioxide snow
has recently been shown to be a feasible
method of removing fingerprint oils and
facial grease, as well as other hydrocarbon
and silicone stains.

RECOATING

Gratings last a long time in the proper
environment, but sometimes hostile condi-
tions cannot be avoided. For example, oil
vapor in a vacuum system can be baked onto
optical surfaces by ultraviolet light. Experi-
ence has shown that damaged gratings can
sometimes be restored to almost original effi-
ciency by careful cleaning, which may or
may not be followed by recoating. Visual
appearance is not always a good indicator of
whether such an operation will be successful.

APPEARANCE

In the early days of diffraction grating
manufacture, R.W. Wood remarked that the
best gratings were nearly always the worst
ones in their cosmetic or visual appearance.
While no one would go so far today, it is
important to realize that a grating with certain
types of blemishes may well perform better
than one which appears perfect to the eye.

Ruled gratings. Cosmetic defects on
ruled gratings may be caused by small
droplets of metal or oxide which have raised
the ruling diamond, or streaks may be caused
by temporary adhesion of aluminum to the
sides of the diamond tool. On ruled concave
gratings, one can usually detect by eye a
series of concentric rings called a target
pattern. Itis caused by minor changes in tool
shape as the diamond swings through the arc
required to rule on a curved surface. Every
effort is made to reduce the visibility of target
patterns to negligible proportions.

Some ruled master gratings have visible
surface defects. The most common sort of
defect is a region of grooves which are bur-
nished too lightly (in relation to the rest of the
grating surface). While readily seen with the
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eye, such a region has little effect on spectro-
scopic performance.

Interference gratings. Interference
gratings are susceptible to a different set of
cosmetic defects. Comets are caused by
specks on the blank; when the blank is
rotated (spun) as the photoresist is applied,
these specks cause the photoresist to flow
around them, leaving comet-like trails. Arti-
facts created during the recording process are
also defects; these are holograms of the opti-
cal components used in the recording of the

grating,.
GRATING MOUNTING

The basic rule of mounting a grating as
for any precise optical element: its shape
should not be changed accidentally through
excessive clamping pressure. This problem
can be circumvented by kinematic (three-
point) cementing from the rear surface, using
a nonrigid cement, or by supporting the sur-
face opposite the point where clamping pres-
sure is applied.
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Definitions are found on bold-face pages.

aberration 29
aberration coefficient 29
Abney mount 33
alignment, in invisible spectral regions 60
anamorphic magnification 10
angle, sign convention for 3,29
angular deviation 4, 34, 44
angular dispersion 6
anomalies 42
astigmatism 30
astronomical grating 59
B engine /3
bandpass 8
bandwidth 38
blaze wavelength 41
blazing 2, 41,49
camera 23
Carpenter prism - see grism
classical diffraction 4
classical equivalent grating 16
classical grating 27
collimator 23
comets 62
concave grating 27
conical diffraction 4
constant-deviation monochromator 34
cross-rulings 59
curvature, of concave blank 28
Czerny-Tumer mount 23, 55
defocus 30
deviation angle 4, 34
diffraction 1, 3

classical 4

conical 4

in-plane 4
diffraction angle 29
diffraction grating - see grating
diffraction limit 36
diffraction order 4

existence 3

overlapping S

zero 5
dispersion 6

angular 6

linear 7

of light by grating 4

plane of 28

reciprocal linear 7
dispersion plane 28
double monochromator 25
Eagle mount 33
Ebert-Fastie mount 24, 55
echelle 10, 14,57
effective spectral bandwidth 38
efficiency 41

absolute 41,52

anomalies 53

curve 41,53

relative 41, 52
errors of run 53
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f/mumber 9
facility 17
fanning error 53
far scatter 54
Fermat's principle 28
filter (grating) 59
first generation interference grating 17, 27, 31
flat-field spectrograph 33
focal distance 30
focal length 9
focal ratio 9
Foucault knife-edge test 53
free spectral range 10
fringe pattern 15
full spectral bandwidth 38
full width at half maximum 38
full width at zero height 38
FWHM 38
FWZH 38
ghosts 11,13
Lyman 57,52
Rowland 13, 51
grass 52
grating 1, 3
as a beam divider 60
as a filter 59
astronomical 59
blazing /4
care 21,61
choice 61
classical 27
cleaning 50, 61
coating 21
concave 27,55
crossed groove patterns on 59
damage 21
echelle 57
fingerprints on 50
first generation interference 17,27
for electron microscope calibration 59
for laser tuning 59
for space-borne spectrometry 60
grazing incidence 57
groove frequency 4, /8
groove pattern /9
groove profile /8
holographic - see grating, interference
identification of blaze direction 21
interference 2, 15
blazing 49
classification 16
recording process /7
versus ruled /8
manufacture time /9
mount 23
terminology 23
with concave grating 32
with plane grating 23
normal 3, 28
overcoating 49
pitch 4
plane 23,55



recoating 62
reflection 1
replica 19, 21
rotation 5
ruled 13
second generation interference 17,27
Sheridon /16
special overcoatings 55
special sizes 60
stray light /8
substrate shape /9
tangent plane 28
testing 14
transmission 1
varied line-space (VLS) 27
VLS 27
grating equation 4
for Littrow configuration 4
in optical media other than air 56
grating normal 3
grating prism - see grism
grazing incidence system 57
grism 56
groove frequency 4
groove spacing 2, 3
errors of run 53
fanning error 33
precision (ruled grating) 2
variations in 5/, 52
grooves per millimeter 4

holographic grating - see grating, interference

in-plane diffraction 4
incidence angle 3, 29
instrument function &8

interference grating - see grating, interference

interferometric control /3

ion etching /8, 49

knife-edge test, Foucault 53

laser tuning 24, 59

limit of resolution 7, — see resolution

line curvature 30

linear dispersion 7
reciprocal 7

linespread function 36

Littrow configuration 4
angular dispersion 6
for laser tuning 59
Rowland ghosts in 52

Littrow mount 24

Lyman ghosts 52

magnification
anamorphic 10
sagittal 36
tangential 36

Mann engine /3

Michelson engine 13

molecular laser tuning 59

Monk-Gillieson mount 24

monochromator 23
double 25
triple 25

near scatter 54

obliquity factor 7

order — see diffraction order

order sorting 6, //

Paschen-Runge 39

Paschen-Runge mount 33

peak wavelength 41
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photoresist 16
pitch 4
plane grating 23, 28
plate factor 7
polarization 42,353
polychromator 23
principal plane 28
prism 56
radius, of concave blank 28
Raman gratings 52
Raman spectroscopy of solid samples 25
reciprocal linear dispersion 7
reflection grating 3
replica 2, 21
replication 2, 21
resolution 8
resolution, spectral 8
and resolving power 9
resolving power 7, 13,55
and spectral resolution 9
maximum theoretical 8
Richardson Grating Laboratory 2
Rowland circle mount 32
Rowland ghosts — see ghosts, 51
ruling engine 13
S-plane 59
sagittal focal distance 30
sagittal focusing 31
sagittal plane 28
sagittal radius, of blank 28
satellites 57,52
scan angle 4
scattered light 54

second generation interference grating 17,27

servo control systems 2
Seya-Namioka monochromator 34
Sheridon grating 16
signal-to-noise ratio (SNR) 12
sine bar §

Snell's law 56

SNR (signal-to-noise ratio) 12
solvents (for cleaning gratings) 50, 61
spectral order — see diffraction order
spectrograph 23

spectrometer 23

specular reflection 4

spot diagram 35§

stigmatic image 29

stray light /7, 18,54

surface microroughness 1/

tangent plane, of grating 28
tangential focal distance 30
tangential focusing 31

tangential plane 28

tangential radius, of blank 28
target pattern 62

temperature control 2

transmission grating 3

triple monochromator 25

varied line-space (VLS) grating 14, 27
vibration 2

VLS (varied line-space) grating 14, 27
Wadsworth mount 33

wavefront testing 53

Wood's anomalies 42

zero order 4, 5
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