

Centro de Astrofísica da Universidade do Porto Universidade de Lisboa, SIM/IDL & LOLS INAF, Osservatorio Astronomico di Trieste INAF, Osservatorio Astronomico di Brera Observatory of the University of Ceneva

ESPRESSO

Fabry-Pérot Calibrator

Final Design Report

VLT-TRE-ESP-13520-0154, Issue 2

May 4^{th} , 2016

Prepared	F. Pepe Name	4/05/2016 _{Date}	Signature
Approved	M. Riva, D. Mégevand _{Name}	Date	Signature
Released	F. Pepe Name	Date	Signature

Issue/Rev.	Date	Section/Page affected	Reason/Remarks
0.1	08/03/2013	All	First draft version
1	13/03/2013	All	FDR prepared version
2	04/05/2016	Title	Changed from Final Design Description and Performance Analysis to Final Design Report
		All	Updated after manufacturing and in view of Sub-system acceptance
		Performance Analysis	Removed and moved to the test report

Change Record

Table of Contents

Chapter 1.	Introduction	
1.1 Scop	be of the Document	
1.2 Docu	uments	
1.2.1	Applicable Documents	9
1.2.2	Reference Documents	9
1.3 Acro	onyms and Abbreviations	
1.3.1	Acronyms	9
Chapter 2.	General Requirements	
2.1 Gene	eral characteristics of the Fabry-Pérot Calibrator	
2.2 Dim	ensioning of the Fabry-Pérot etalon	
Chapter 3.	Technical Requirements	
3.1 Ope	rational conditions	14
3.1.1	Atmospheric pressure	14
3.1.2	Temperature	
3.1.3	Relative humidity	
3.2 Perf	ormance requirements	
3.2.1	Etalon requirements	
3.2.2	Fabry-Pérot parameters	
3.2.3	Delivered flux and flux homogeneity	
3.2.4	Wavelengths stability	
3.2.5	Line shape and line shape stability	
3.2.6	Vacuum	
3.2.7	Monitoring	
3.2.8	Summary of performances requirements towards the FPC	
Chapter 4.	Design architecture	
4.1 Proc	luct Tree of the FPC	
4.2 Prin	nary source and spectral flux	
4.3 Etal	on parameters	
4.4 The	rmal control	

4.5 Pressure sensor and controller	23
4.6 Summary of hardware devices	24
Chapter 5. Mechanical design	25
5.1 Overview	25
5.2 The vacuum tank	28
5.3 Optical feed-through	28
5.4 Fabry-Pérot assembly	29
5.5 The input fiber-holder and spider	29
5.6 The etalon mounting	30
5.7 The parabolic mirror mounting	31
5.8 The output fiber-holder and spider	32
Chapter 6. Interfaces	33
6.1 Mechanical interface	33
6.2 Optical interface	34
6.3 Hardware interfaces	34
6.4 Control system software interface	34
Chapter 7. Appendix	36
7.1 Data sheets	36

List of Figures

Figure 1: Functional diagram of the FPC	17
Figure 2: EQ99 light source and lamp controller	19
Figure 3: Spectral power distribution of the LDLS source.	20
Figure 4: Internal transmission of the FPC fibers	20
Figure 5: Heat-blocking filter TKG – 5253 transmittance	21
Figure 6: ICOS 3-D drawing of the Fabry-Pérot. The gaps of the ESPRESSO etalon is of 7.6 mm2	22
Figure 7: ESPRESSO etalon's mirror reflectivity	23
Figure 8: Internal transmission of Infrasil Fused Silica	23
Figure 9: Lakeshore 336S Temperature Controller	23

VLT-TRE-ESP-13520-0154, Issue

Figure 10: Vacuum gauge (left) and its controller for laboratory purposes (right)	24
Figure 11: Mechanically assembly of the FPC	26
Figure 12: Optical layout of the FPC	27
Figure 13: Ouside view of the FPC's vacuum vessel	28
Figure 14: Fiber-optical vacuum feed-though by SEDI-ATI	29
Figure 15: General view of the FPC opto-mechanical assembly (left) and details of the fixat (right)	tion 29
Figure 16: Section view of the upper spider and fiber support	30
Figure 17: Section view of the etalon and its support	31
Figure 18: Section view of the parabolic mirror and its support	31
Figure 19: View of the lower (output) spider and fiber support	32
Figure 20: FPCS cabinet	33
Figure 21: Configuration of ESPRESSO and location of the FPC inside VLT's Combined Cou Laboratory	dé 34

List of Tables

Table 1: Requirements towards the FPC	
Table 2: Product Tree of the Fabry-Pérot Calibrator	17
Table 3: FPC hardware devices	24

Chapter 1. Introduction

1.1 Scope of the Document

This document describes the Fabry-Pérot Calibrator (FPC) foreseen as a backup for ESPRESSO, in case the Laser Frequency Comb will not be available within the proper specifications in due time. Refer to the LFC procurement strategy document RD-1. The document has been updated after manufacturing of the FPC and for sub-system acceptance.

1.2 Documents

The applicable and reference documents are listed below:

1.2.1 Applicable Documents

AD-1	ESPRESSO Statement of Work	VLT-SOW-ESO-13520-5059	1	01.02.2011
AD-2	ESPRESSO Technical Specifications	VLT-SPE-ESO-13520-4633	3	01.02.2011

1.2.2 Reference Documents

RD-1	Wavelength calibration system	VLT-TRE-ESO-13529-5823	2	12.03.2013
	based on a laser frequency comb: Status and procurement strategy			
RD-2	Fabry-Pérot Calibrator Product Tree	VLT-LIS-ESP-13520-9201	1	04.05.2016
RD-3	ESPRESSO – Paranal Observatory	VLT-ICD-ESO-13529-5412	3	28.11.2014
	ICD			
RD-4	ICD Calibration Unit – Fabry-Pérot	VLT-ICD-ESP-13520-0190	2	12.09.2014
RD-5	Vacuum and Cryogenic PLC Control	VLT-TRE-ESO-13520-5953	1	08.12.2014
	System			
RD-6	Instrument Control Electronics	VLT-TRE-ESP-13520-0041	3	25.11.2014
	design report			
RD-7	Instrument Software Design	VLT-TRE-ESP-13520-0101	1.1	19.07.2013
	Description			

1.3 Acronyms and Abbreviations

1.3.1 Acronyms

- AD Applicable Document
- AIV Assembly, Integration and Verification
- CCL Combined Coudé Laboratory (of the VLT)
- CIDL Configuration Items Data List

CTE E-ELT ESO ESPRESSO FDR FP FPC FWHM HW ICD	Coefficient of Thermal Expansion European Extremely Large Telescope European Southern Observatory Echelle Spectrograph for Rocky Exoplanets and Stable Spectroscopic Observations Final Design Review Fabry-Pérot (etalon) Fabry-Pérot Calibrator Full-Width at Half Maximum Hardware Interface Control Document
ICS	Instrument Control Software
ISU	International Organisation for Standardisation
	Instrumental Profile
	Laser-Frequency Comb
	Line-Replaceable Unit
MTBF	Mean Time Between Failures
N/A	Not Applicable
, PAC	Provisional Acceptance Chile
PAE	Provisional Acceptance Europe
PDR	Preliminary Design Review
PI	Principal Investigator
PLC	Programmable Logic Controller
PM	Project Manager
QA	Quality Assurance
RAMS	Reliability Availability Maintainability Safety
RD	Reference Document
RfW	Request for Waiver
RV	Radial Velocity
SOW	Statement Of Work
SW	Software
TBC	To Be Confirmed
TBD	To Be Defined/To Be Developed
ThAr	Thorium-Argon (lamp)
ULE	Ultra-Low Expansion (material)
UPS	Uninterrupted Power Supply
UT	Unit Telescope (8.2 meter telescope at Paranal)
VLT	Very Large Telescope
VM	Verification Matrix
WBS	Work Breakdown Structure
WP	Work Package

Chapter 2. General Requirements

2.1 General characteristics of the Fabry-Pérot Calibrator

The FPC is designed as a fallback solution in case of an LFC of suitable properties would not be available by the end of the ESPRESSO project or beginning of operations. The purpose of the Fabry-Pérot Calibrator FPC is to provide a large number of ultra-stable lines in the wavelength range of the ESPRESSO spectrograph. The FPC shall ensure 'at least' adequate short-term stability, i.e. better than 10 cm/s during an observing night. Since the FPC system is fully passive, no guarantee can be given a priori that the stability of 10 cm/s is achieved over long term or even years. It will therefore be operated in addition to an absolute reference, so a ThAr lamp or a stabilized laser to which it will be referenced periodically.

We remind here the properties desired for this module:

- 1. The calibration source must cover the full wavelength domain of the spectrograph.
- 2. The line position and shape repeatability of all lines must be better than 0.1 m/s over the instrument lifetime.
- 3. The lines are not resolved by the spectrograph, since otherwise information is lost, respectively we do not take full advantage of the spectral resolution of the instrument. The resolution of the spectrograph is 120'000 in its standard mode, limited by the illuminating fiber size.
- 4. The line distance is perfectly stable and analytically defined.
- 5. The line distance must be minimum 2 and maximum 7 FWHMs of the spectrograph IP.
- 6. The relative intensity of any neighboring lines must be stable at 10% over time.
- 7. The dynamic range of line intensities over one order must be smaller than a factor 4.

As a first goal, the system shall be made sufficiently stable to be used as a relative reference during an astronomical observing night of typically 12 hours. The module will possibly need to be re-calibrated every night, e.g. with a ThAr lamp or a LFC, for absolute referencing, but will serve as perfect simultaneous reference within the night. The second objective will be to extend the time during which the module remains stable. Ideally, the module will be intrinsically so stable, that re-calibration will not be needed over large time scales (years).

Reflection is obtained by a multi-layer thin film coating of the inner optical surfaces. The following aspect must be considered: *The apparent separation of the two spacers depends on the effective penetration depths of the wave on the reflective surface.*

- ▲ Because of the varying real and imaginary part of the refractive index as a function of wavelength, the effective Etalon separation will vary with wavelength. This wavelength dependence must be avoided as far as possible, in particular, a temperature or aging effect must be avoided. If this wavelength dependence cannot be avoided completely, it should be at least very "smooth".
- ▲ Thermal effects in the coating will affect the way the etalon behaves: The dielectric stack will have a certain thickness. When the ambient temperature changes, the stack will

expand (CTE of some 10⁻⁶) and this will change the effective gap of the etalon. With a gap of 7 mm, for instance, and a dielectric stack of 4 μ m thick with a CTE of 7 10⁻⁶, the variation of the apparent separation will be about 8 10⁻⁹ / K. In the same way, the index of refraction will change with temperature and affect the apparent penetration depth of the optical wave in the coating.

▲ Aging of Zerodur has been studied in metrology labs. Schott data indicates shrinkage of 10⁻⁷ per year. However, the experience on the HARPS FP shows that the effect of aging is well below the estimated value. In alternative to Zerodur, ULE can be used.

When making trade-off, the following order of priorities shall be considered:

- 1. Relative wavelength stability over temperature and time (between two neighboring lines)
- 2. Wavelength stability over temperature and time
- 3. Equidistance of transmitted wavelengths
- 4. Uniformity of line intensity and line shape and width

2.2 Dimensioning of the Fabry-Pérot etalon

The primary parameters for which the Fabry-Pérot etalon has to be dimensioned are:

Variables:

- \downarrow Spectrograph resolution R_S
- Shortest wavelength λ_B
- Longest wavelength λ_R

Requirements for an optimum use of the lines are:

- i. The line separation is minimum on the blue side, because of the FP equation. The separation must be chosen such that the lines can be resolved by the spectrograph: The peak separation at all wavelength must be > 3 FWHM: $\Delta \lambda \ge 3 \cdot \frac{\lambda}{R_s}$ (R1)
- ii. The line separation is highest on the red side. At a given Finesse, the FP lines become wider there. It shall be avoided, that the spectrograph resolves the lines: The FP line must be under-resolved by a factor of $2/3 : \delta \lambda \le 2/3 \cdot \frac{\lambda}{R_s}$ (R2)

Let us now first derive the required FP. Given the gap D of the etalon, the resonance of the FP will be achieved whenever $2D = m\lambda$ (1).

Therefore, the separation between the 2 bluest peaks will be, using requirement (R2):

$$\Delta \lambda = \frac{2D}{m-1} - \frac{2D}{m} = \frac{2D}{m(m-1)} \ge 3 \cdot \frac{\lambda}{R_S}$$
(2)

Let's replace m in the last inequality by using equation (1),

$$\frac{2D}{m(m-1)} \cong \frac{2D}{m^2} = \lambda^2 / 2D \ge 3 \cdot \frac{\lambda}{R_s}$$
(3)

and solve for D. In order to be true for all wavelengths, the relation must me satisfied for the shortest wavelength $\lambda = \lambda_B$, such that we get $D = \lambda_B \cdot R_S/6$ (P1)

Now let's derive the required finesse *F* of the etalon: The Finesse is defined as the ratio of the line separation to the FWHM: $F = \Delta \lambda / \delta \lambda$ (4)

We can express again $\Delta \lambda$ as a function of the gap and the FP order

$$\Delta \lambda = 2D/m(m-1) \cong 2D/m^2$$
⁽⁵⁾

and introduce equation (5) and requirement (R2) into equation (4)

$$F = \frac{\Delta\lambda}{\delta\lambda} \ge \frac{2D3R_S}{m^2 2\lambda} = \frac{3DR_S}{m^2 \lambda} = \frac{3DR_S \lambda^2}{4D^2 \lambda} = \frac{3R_S \lambda}{4D}$$
(6)

where in the step before the last we used the etalon equation (1). Since this condition must apply at all wavelengths, we have to choose *F* for the longest wavelength and substitute *D* using (P1):

$$F = \frac{3R_S\lambda_R}{4D} = 18 \cdot \frac{\lambda_R}{4\lambda_B} = \frac{9\lambda_R}{2\lambda_B}$$
(P2)

Let's now look at the etalon parameters from the instrument figures: $R_S = 120'000$, $\lambda_B = 380nm$, $\lambda_R = 780nm$ we find

Chapter 3. Technical Requirements

3.1 Operational conditions

The FPC will be operated in the CCL at the Paranal Observatory, Chile. It will be located within 2T. The FPC will not be exposed to any motion, gravity, vibrations, etc.

3.1.1 Atmospheric pressure

Atmospheric pressure is 760 mbar in average. Given the high ambient pressure variations the FPC etalon will be operated in vacuum. A pressure value of 0 mBar must be considered for the optical computations.

3.1.2 Temperature

The temperature of the environment is typically of $16 \pm 5^{\circ}$ C.

3.1.3 Relative humidity

The system is working normally in a controlled environment with relative humidity always lower than 100%. During manufacturing, transportation, installation, and maintenance the humidity can attain peeks close to 100%.

3.2 Performance requirements

3.2.1 Etalon requirements

Operational wavelength range:	380 nm - 780 nm	
Total transmittance at peak:	T > 10% in the wavelength range	
Transmittance uniformity	$T_{max}/T_{min} < 2$	in the wavelength range
Transmittance variations	dT/d λ < 2% per nm	in order not to distort the
	Lines by more than 10 cm/s	

3.2.2 Fabry-Pérot parameters

Effective total Finesse:	10 < F < 12	in the wavelength range
Fabry-Pérot spacing:	$D = 7.6 \text{ mm} \pm 0.0005 \text{ mm}$	
In order to achieve a total contributions must be:	(reflectivity-limited) Fines	sse of $F = 10$, the various Finesse
Reflectivity Finesse:	$F_R \ge \frac{5}{4} \cdot 10 = 12.5$	
Aperture Finesse:	$F_{\theta} \geq 2.35 \cdot F = 23.5$	
Defect Finesse:	$F_D \ge \sqrt{2} \cdot 2.35 \cdot F = 33.2$	
Parallelism Finesse:	$F_P \ge \sqrt{2} \cdot 2.35 \cdot F = 33.2$	

VLT-TRE-ESP-13520-0154, Issue

3.2.3 Delivered flux and flux homogeneity

The FPC shall deliver sufficient flux at peak wavelength within the étendue accepted by the spectrograph, such that a global photon-noise precision of better than 5 cm/s is achieved in less than 20 s.

The white-light sources should be selected and/or balanced in a way that the ratio between maximum and minimum counts per extracted pixels measured all over the spectrum must not exceed a factor of 5 (dynamic range).

3.2.4 Wavelengths stability

The Fabry-Pérot transmitted wavelengths must remain stable with time. The Fabry-Pérot shall be placed in vacuum, and the required temperature stability specified. Changes of the transmitted wavelengths must be minimized.

Wavelength repeatability:	$d\lambda/dt < 2 \ 10^{-10} \ \lambda(0.07 \ m/s)$ at any wavelength				
	required: during at least 12 hours				
	goal: during 10 years				
Absolute wavelength:	$λ - λ_0 < 3 \ge 10^{-8} λ$ (10 m/s)	at any wavelength			

The absolute wavelength of a line is defined on the centroid of the transmitted FP line with respect to the expected wavelength given by the nominal etalon spacing. Wavelength repeatability indicates the stability of the centroid of a line.

The Fabry-Pérot must be optimized for minimum sensitivity of the transmitted wavelengths with regard to temperature variations. If the final design is intrinsically stable it relaxes the contraints on the thermal control stability.

3.2.5 Line shape and line shape stability

The shape of the transmitted FP lines (intensity, symmetry, width) shall be as uniform as possible. The line shape shall be as stable as possible. It is therefore suggested that the etalon finesse is determined by the reflectivity finesse, which is the most insensitive to geometrical aspects. However, in order to make the transmitted lines 'equidistant' to a level described by the 'absolute wavelength' requirement, the phase of the etalon transmittance function, and thus the reflectance of the individual mirrors, shall be kept constant as a function of wavelength, if possible. Since this is very difficult, the plan will be to calibrate the phase variations at the beginning of the lifetime of the FPC.

3.2.6 Vacuum

From the stability requirements we deduce that the air pressure around the FP etalon must be kept stable within 10^{-3} mbar during 12 hours. The requirement shall be therefore formulated as:

 $dp/dt < 2 \ge 10^{-3}$ mbar per day.

3.2.7 Monitoring

The temperature of the FPC, and in particular the etalon, must be monitored and controlled continuously with a resolution of 0.001 K, a short-term repeatability of 0.002 K over time scales of 1 months and of 0.025 K over five years, and an absolute accuracy of 0.1 K. The monitoring must have a data link to the ESPRESSO control system.

The air pressure around the etalon must be monitored continuously with a resolution and precision of 0.0001 mbar, and an absolute accuracy of 0.001 mbar. The monitoring must have a data link to the ESPRESSO control software.

3.2.8 Summary of performances requirements towards the FPC

In the following Table 1 we summarize the relevant technical requirements towards the FPC.

Item	Requirement	Comment	
Wavelength coverage	380 – 780 nm	Wavelength range of ESPRESSO	
System transmittance	> 10%	In the wavelength range	
Transmittance uniformity	T _{max} /T _{min} < 2	In the wavelength range	
Transmittance variations	dT/dλ< 2% per nm		
Etalon total Finesse	10 < F < 12	In the wavelength range	
Etalon spacing	D = 7.6 mm ± 0.0005 mm		
Photon noise	< 5 cm/s	Global precision achieved in a single exposure	
Flux homogeneity	F _{max} /F _{min} < 5	In the wavelength range	
Line width	< 2/3 of spectral element	A spectral element is the wavelength divided by the spectral resolution	
Line separation	2-7 x spectral element		
Short-term repeatability	$d\lambda/dt < 2 \ 10^{-10} \ \lambda(0.07 \ m/s)$	Over 12 hours	
Long-term repeatability and line-shape stability	$d\lambda/dt < 2 \ 10^{-10} \ \lambda(0.07 \ m/s)$	Over 20 years (goal)	
Local wavelength accuracy	λ - $λ_0$ < 3 x 10 ⁻⁸ λ (10 m/s)	For any FPC line with respect to theoretical	

Table 1: Requirements towards the FPC

Chapter 4. Design architecture

The proposed FPC is derived from a new concept that has been successfully evaluated on HARPS and HARPS-N: The stability reference for the radial velocity is essentially a Fabry-Pérot etalon housed in a temperature controlled vacuum enclosure. The etalon is fiber-fed by a bright white lamp. A symmetrical set-up of parabolas couples the input to the exit fibers, with the etalon located in the collimated beam between the two parabolas, making the design achromatic.

Figure 1: Functional diagram of the FPC

4.1 Product Tree of the FPC

The complete product tree, including parts details and manufacturers, is given in the Excel file RD-2. A top-level extract is given in Table 2.

Table 2: Product Tree of the Fabry-Pérot Calibrator

Unit	Assembly	Subassembly	Part
Fabry-Pérot Calibrator			Fabry-Pérot Calibrator
	Cabinet Assembly		Cabinet Assembly
		Electronic Cabinet	Electronic Cabinet
		Isolating Panels	Isolating Panels
	Light Source Assembly		Lights Source Assembly
		ENERGETIQ Laser-Driven Light Source LDLS	ENERGETIQ Laser-Driven Light Source LDLS
		ENERGETIQ Remote Control for LDLS	ENERGETIQ Remote Control for LDLS
		ENERGETIQ Extreme Solar-Resistant fiber	ENERGETIQ Extreme Solar-Resistant fiber
		Filter Box	Filter Box
			Filter Box Holder
			Filter Box Input Collimator
			Filter Box Thermal Filter Holder
			Filter Box Thermal Filter
			Filter Box Output Collimator
			Filter Box Cover
		Fiber Connection Filter-Box to	Fiber Connection Filter-Box to Fabry-Pérot

		Fabry-Pérot	
	Fabry-Pérot Assembly		Fabry-Pérot Assembly
		Vacuum System Assembly	Vacuum System Assembly
			Input Vacuum Flange
			Vacuum Tank Body
			BLANK FLANGE DN40 CE MODIFIED
			Isolating Spacer
			CLAW CLAMP DN63-250 ISO-K
			CLAMPING RING DN25 ISO-KF
			SEAL & CENTERING RING DN 25 ISO-KF
			CLAMP
			ELECTRICAL FEEDTHROUGH CONNECTOR
			O-RING Ø2 - Øint. 23 HITEC FKM 75.5/VA75F
			BLANK FLANGE DN160 ISO-K ALUMINUM
			T-PIECE STAINLESS STEEL DN 25 ISO-KF
			diaphragm angle valve
			Adapter DN 40 CF/ DN 40 ISO-KF
			Flange with Pipe Thread and FKM Seal DN 25 ISO-KE
			CE Coppor Cacket
		FP Mechanics Assembly	FP Mechanics Assembly
			Flange 1
			Flange 2
			Flange 3 (VIS-FP)
			Holders for VIS-FP
			Mask for VIS-FP
			Flange 4
			Flange 5
			Body Spacer 1
			Body Spacer 2
			Body Spacer 3
			Pody Spacer 4
			Mirror Dillors
			Mirror Holder
			XY Spider
			XY Ring
			Fixed Spider
			Mirror Mask
			Adjustable Shims
			OWIS FGS 10-17 écrou
			OWIS FGS 10-17 vis
			O-RING Ø3-Øint52 HITEC FKM 75,5/VA75F
			O-RING Ø2-Øint22 HITEC EKM 75 5/VA75E
<u> </u>			Fiber connector adapter SM1-EC
		ED Optics	
			ED Input Fiber Food Through
			rr input riber reeu-Inrougn
			FP Input Fiber
			FP Parabolic Collimator Mirror
			FP Etalon
			FP Parabolic Focussing Mirror
			FP Output Fiber
			FP Output Fiber Feed-Through
	Pressure Control		Pressure Control
			Pressure Gauge
			Pressure Controller (only in lab. configuration)
<u> </u>			Electrical Cable Controller-Gauge (only in lab
			Configuration
	I		comgulation

Temperature Control		Temperature Control		
LakeShore 336 Temperature Controller		LakeShore 336 Temperature Controller		
		Si-Diodes Temperature Sensor + Wiring		
		Electrical Cable Controller-FP		
		Heating Foils + Wiring		

4.2 Primary source and spectral flux

For irradiance reasons, spectral flatness and MTBF, we would like to use a innovative source called "laser driven light source" EQ-99FC Plus from the company Energetiq. This source is presently being used in integration on HARPS North with convincing results. The light source possesses a complete remote control system for control via software. However, the lamp will be controlled through PLCs and attached to the ICS. For stability reasons the lamp must be kept continuously ON and the ICS/PLC control to switch the lamp ON/OFF must be disabled. The lifetime of such a lamp is longer than 20'000 hours. A LRU spare shall be procured for immediate exchange in case of failure. For the fibers standard Ceramoptec octagonal fibers with high internal transmittance will be chosen.

Figure 2: EQ99 light source and lamp controller

Figure 3: Spectral power distribution of the LDLS source.

Figure 4: Internal transmission of the FPC fibers

In order to reduce the heat-up of the FP etalon by the source, we will introduce in the laser source a heat-blocking filter by Andover Corp. (Type 800FL07-12.5) with the transmittance curve shown is Figure 5. As a function of the obtained chromatic distribution, a balancing filter will be added. For the moment no choice has been made, since a) a balancing filter may not be necessary, given the high blue flux of the Fabry-Pérot, and b) we prefer in any case to see the resulting chromatic flux distribution. A filter can be inserted easily at anytime an a appropriate location will be reserved for it.

Figure 5: Heat-blocking filter TKG – 5253 transmittance

4.3 Etalon parameters

Given the gap and Finesse requirement, the etalon is designed according to the following parameters:

Gap:	D = 7.6 mm			
Clear diameter:	D = 40 mm (design), focal length of collimator f = 100 mm			
Reflectivity Finesse:	$F_{R} = 11$	$R(\lambda) = const = 75\%$		
Aperture Finesse:	$F_{\lambda} = 23$	Fiber diameter d < 300 microns @ f_{coll} = 100 mm		
Defect Finesse:	$F_{\rm D} = 33$	Mirror wavefront better than l/50 P-V		
Parallelism Finesse:	$F_{P} = 33$	Departure from parallelism < 10 nm -> 0.25 10 ⁻⁷ rad		

The Fabry-Prérot is manufactured by ICOS (UK) in accordance with the drawing of Figure 6. The etalon plates are manufactured in INFRASIL (see transmittance in Figure 7: ESPRESSO etalon's mirror reflectivity

Figure 8). The reflectivity curve is given in Figure 7. The internal fibers being very short, we use Ceramoptec WF fibers. The input fiber has a core diameter of 200 μ m and is octagonal for illumination stability reasons, the output fiber core diameter is 600 μ m and the fiber is circular.

Figure 6: ICOS 3-D drawing of the Fabry-Pérot. The gaps of the ESPRESSO etalon is of 7.6 mm

Figure 7: ESPRESSO etalon's mirror reflectivity

Figure 8: Internal transmission of Infrasil Fused Silica

4.4 Thermal control

From our experience with previous similar systems, the thermal control of the etalon structure to a couple of mK rms should be a straightforward affair. It is based on a Lakeshore 336S temperature controller (Figure 9) using silicon diodes as sensors and four thermal pads as heating elements, which are glued around the vacuum tank of the Fabry-Pérot.

Figure 9: Lakeshore 336S Temperature Controller

4.5 Pressure sensor and controller

The pressure of the FPC and thus around the etalon will be measured by means of an WRG.NW25 gauge from Edwards attached to the vacuum tank (Gauge delivered by ESO, see

Figure 10). Stand-alone controller will be used in the laboratory setup. For operations, however, the pressure is attached directed to PLC on the Vacuum Control cabinet.

Figure 10: Vacuum gauge (left) and its controller for laboratory purposes (right)

4.6 Summary of hardware devices

Table 3: FPC hardware devices

Туре	Manufacture	Reference	Interface	Notes
Temperature controller	LAKESHORE	336	Ethernet	
Temperature sensor	LAKESHORE	Si diodes DT-670		Silicon diode
Pressure gauge	Edwards	WRG.NW25		
Lamp controller EQ99 Plus	Energetiq		Will by by-passed by l	PLC/ICS system

Chapter 5. Mechanical design

5.1 Overview

The vacuum tank is a simple cylinder of electro-polished aluminum with 2 aluminum covers. It contains the actual FPC and its etalon, which is sketched in the following. Figure 11 shows the mechanical assembly while Figure 12 gives the optical layout.

While the first model of the FPC had a structure made of optically contacted Zerodur cylinders, a sensitivity analysis demonstrated later that this was not necessary. The mechanical structure of the second model (HARPS North) is more classical and a less expensive assembly of aluminum elements holding the mirrors, the etalon and the fiber connectors.

28/49

5.2 The vacuum tank

The vacuum vessel is a hermetic chamber in which the pressure can be evacuated to 1E-4 mbar and the temperature is controlled. It is made out of Aluminum and is composed by 3 parts:

- a) A centre body (1): it is a tube with 2 welded flanges at each end.
- b) A blind flange (2) on the bottom side.
- c) A modified blind flange (3) with a pumping flange (4) on the upper side, an optical feed-through (5) and 1 electrical feed-through (6).

2 viton o-rings insure the airtightness and 2 times four clamps maintain all parts together. 4 heater pads for temperature control surround the central body.

Figure 13: Ouside view of the FPC's vacuum vessel

5.3 Optical feed-through

The optical feed-through is composed of two off-the-shelf fiber feed-though of the type K-TRAV-FC-M10 manufactured by SEDI-ATI (Figure 14). They are equipped with standard 200 μ m and 600 μ m core diameter step-index fiber for the input and the output feed, respectively. Both end are equipped with femal FC connectors. The feed-throughs are mounted on a standard KF-40 blind flange on which two holes have been drilled.

Figure 14: Fiber-optical vacuum feed-though by SEDI-ATI

5.4 Fabry-Pérot assembly

The FPC mechanical assembly (Figure 15) is a stand-alone system placed in the vacuum vessel and fixed to the top flange in 3 points (see Figure 15, right hand). Insulating pads avoid direct metal-metal contact between the flange and the mechanical assembly and provide by this mean thermal insulation from the outside.

Figure 15: General view of the FPC opto-mechanical assembly (left) and details of the fixation (right)

5.5 The input fiber-holder and spider

Details of the input fiber system are shown in Figure 16. The light is injected through the input (upper) optical fiber connector (1). A spider (2) is used for the final optical alignment. In fact, focus and alignment must be ensured within a couple of tens of microns in order to preserve

spectral finesse. The system is therefore adjustable in all directions (X,Y and Z, focus): 4 pushing screws (3) for X,Y direction and 3 spacers (4) to shim for the vertical direction. The 4 screws are removed after adjustment. To insure an accurate displacement in X and Y direction, an intermediate ring (5) is placed between the supporting flange and the spider. In this intermediate ring are machined grooves (6) in the 2 directions.

5.6 The etalon mounting

The etalon (1) is the main optical part. Its base is an optically-contacted glass flange by which it is fixed it to the metallic base plate. 3 brackets (2) and a Viton® O-ring (3), used as a spring, maintain the etalon in position on the base plate (4). See Figure 17 for details.

Figure 17: Section view of the etalon and its support

5.7 The parabolic mirror mounting

Two parabolic mirrors (1) are mounted on each end of the FPC mechanically assembly (Figure 18). The first one collimates the beam coming from the input fiber and reflects it back through the etalon. The second one collects the light coming from the etalon and focuses it onto the output fiber. These mirrors have a reference surface (2) on the same side as the parabola (3). A Viton® O-ring (4) compressed by an aluminum ring (5) maintains the mirror in position. 3 spacers (6) define the mechanical distance between the base plate and the aluminum ring, such to avoid stresses on the mirror.

Figure 18: Section view of the parabolic mirror and its support

5.8 The output fiber-holder and spider

Figure 19 shows the support for the output (lower) optical fiber connector (1). This spider (2) is adjustable only in vertical direction (Z, focus) by shimming spacers (3). The mechanical precision of the mechanical assembly and the size of the output fiber (600 μ m) are such that no optical X,Y-alignment is necessary in principle. Nevertheless, and if necessery, the output parabolic mirror can be slightly shifted in X,Y direction to maximize the coupling efficiency.

Chapter 6. Interfaces

6.1 Mechanical interface

The FPC system will be housed by a dedicated cabinet (Figure 20). The implantation and location of the cabinet inside the Combined-Coudé Laboratory at Paranal is defined and described in RD-3 (see also Figure 21).

The Fabry-Pérot can be attached to the pumping system of the vacuum system for initial pumping and possible periodic pumping. However, given the fact that the pressure increase is sufficiently small to avoid nightly drifts larger than the maximum required 10 cm/s, and, because long-term drifts will be calibrated with an external absolute calibration reference, no regular pumping is required and the FPC will be disconnected from the pumping system during regular operations.

Figure 20: FPCS cabinet

Figure 21: Configuration of ESPRESSO and location of the FPC inside VLT's Combined Coudé Laboratory

The primary light source (LDLS) and its control electronics will be packaged in a 3U 19" crate within the 'Thermal Control' cabinet (Figure 21). In the same cabinet another 3U 19" crate will be allocated to the Lakeshore 336S temperature controller.

6.2 Optical interface

The FPC will have only one optical interface to the calibration unit. It will provide a female FC connector holding a 600 μ m fiber. A Y-fiber will connect the FPC with the Calibration Unit providing two FC-connectorized fibers of 300 μ m core diameter each. The interface is defined and described in RD-4.

6.3 Hardware interfaces

The FPC is a stand-alone and passive unit. No remote power control is required since it will be continuously operated. The unit (LDLS, T-control and pressure gauge) can be turned ON and turned OFF manually, whenever necessary. The LDLS and the Lakeshore T-controllers are installed in the 'Thermal Control' cabinet. Standard 230V50Hz UPS power lines must be delivered by the cabinet. Both devices are connected to the Ethernet switch. Details are given in RD-6. The pressure gauge of the FPC is connected directly to a PLC on the cryo- and vacuum-control cabinet. The detailed system is described in RD-5.

6.4 Control system software interface

In principle, no active control is required by the FPC. All devices, the T-controller, the pressure sensor and the LDLS light source can be operated as stand-alone. Nevertheless, the FPC will be connected 'passively' to the ICS for monitoring:

- The Lakeshore temperature controller is read for the monitoring of the two temperature sensors of the FPC.
- The Edwards pressure gauge, and thus the pressure of the FPC, will be read directly through a PLC installed on the Cryo- and Vacuum-Control cabinet.
- The status of the LDLS will be read by the ICS.

All active commands must be disabled in the ICS! The hardware devices will be configured such to start-up automatically after re-start or power up. Details of the intergration of the monitoring of the FPC hardware devices into the ICS is detailed in RD-7.

Chapter 7. Appendix

7.1 Data sheets

In the following we will present the data sheets of:

- Energetiq EQ99 Plus lamp controller
- Lakeshore 336 Temperature Controller
- Edwards WRG.NW25 Pressure Gauge

LDLS™ EQ-99 Manager Smart Controller for Laser-Driven Light Sources

The EQ-99 Manager offers enhanced control of the EQ-99 series Laser-Driven Light Source (LDLS), adding valuable functionality to the brightest, longest lasting, broadband light source available today.

USB Computer Interface

The EQ-99 Manager connects to a computer with a simple USB interface, allowing easy control and monitoring of the Laser-Driven Light Source.

LDLS Status Monitoring

Monitor the status of the LDLS, including bulb operation hours, through the USB interface or on the high visibility front-panel display.

Advanced Shutter Control

The EQ-99 Manager includes advanced shutter control with a variety of control modes and programmable shutter speed. The optional EQ-99 Shutter can be mounted to the window of the EQ-99 or directly to an optical bench.

Universal Power Supply

The EQ-99 Manager houses a universal power supply for worldwide operation without a separate power adapter.

Compatible with the Latest EQ-99 Products

The EQ-99 Manager is a smart controller designed to be used with the latest EQ-99, EQ-99FC and EQ-99CAL Laser-Driven Light Source products.

Energetiq's Laser-Driven Light Sources

The groundbreaking Laser-Driven Light Source (LDLS) is the brightest, longest lasting, broadband light source available today, making it ideal for researchers working in demanding imaging and analytical spectroscopy applications. Energetiq's patented laser-driven technology enables extreme high brightness over a broad spectral range — from 170nm through visible into the near infrared.

- Broadband light source covers the entire spectral range, eliminating the need for multiple lamps
- Extremely high brightness across the complete spectrum
- Patented laser-driven bulb technology for ultra-long lamp life
- Excellent spatial and power stability enhances repeatability
- Electrodeless operation reduces consumable costs and minimizes calibration

37/49

Controller

47 x 215 x 280mm (1.8 x 8.5 x 11 in.)

Weight 1.6 kg (3.4 lbs)

Utility Requirements Electrical

100-240v, 50/60Hz, 2.5A CE Mark

Compliance Shutter Performance

• 100ms minimum exposure time, 2Hz maximum cycle rate.

Energetiq's Laser-Driven Light Source Patented Technology

Winner of the prestigious R&D 100 Award for technological significance and the Prism Award for Photonics Innovation, Energetiq's Laser-Driven Light Source is developed with revolutionary technology that offers unprecedented brightness and long life across the complete spectrum, from 170-2100nm.

Energetiq's innovative LDLS technology uses a CW laser to directly heat a Xenon plasma to the high temperatures necessary for efficient deep ultraviolet production. In traditional approaches, brightness, UV power, and lamp life are limited by the use of electrodes to couple power to the plasma. In contrast, LDLS technology creates small, high brightness plasma without electrodes, allowing efficient collection of light, a broad spectral range from the deepest UV through visible and beyond, and long lamp life.

Energetiq Technology, Inc. 7 Constitution Way Woburn, MA 01801 Phone: +1 781-939-0763 Fax: + 1 781-939-0769 info@energetiq.com www.energetiq.com

About Energetiq

Energetiq Technology, Inc. is a developer and manufacturer of advanced light sources that enable the analysis and manufacture nano-scale structures and products. The Energetiq team combines its deep understanding of the high power plasma physics needed for high-brightness light generation with its long experience in building rugged industrial and scientific products. The result is that users can expect the highest levels of performance combined with the highest reliability.

Specifications are subject to change without notice. EQ99 Manager—1/13

©2013 Energetiq Technology, Inc. All rights reserved. **Model 336** Temperature Controller

Model 336 Temperature Controller

- Operates down to 300 mK with appropriate NTC RTD sensors
- Four sensor inputs and four independent control outputs
- Two PID control loops: 100 W and 50 W into a 50 Ω or 25 Ω load
- Autotuning automatically calculates PID parameters
- Automatically switch sensor inputs using zones to allow continuous measurement and control from 300 mK to 1 505 K
- Custom display setup allows you to label each sensor input
- Ethernet, USB, and IEEE-488 interfaces
- Supports diode, RTD, and thermocouple temperature sensors
- Sensor excitation current reversal eliminates thermal EMF errors for resistance sensors
- ±10 V analog voltage outputs, alarms, and relays
- CE certification
- Full 3 year standard warranty

Introduction

The first of a new generation of innovative temperature measurement and control solutions by Lake Shore, the Model 336 temperature controller comes standard equipped with many advanced features promised to deliver the functionality and reliable service you've come to expect from the world leader in cryogenic thermometry. The Model 336 is the only temperature controller available with four sensor inputs, four control outputs and 150 W of low noise heater power. Two independent heater outputs providing 100 W and 50 W can be associated with any of the four sensor inputs and programmed for closed loop temperature control in proportional-integral-derivative (PID) mode. The improved autotuning feature of the Model 336 can be used to automatically collect PID parameters, so you spend less time tuning your controller and more time conducting experiments.

The Model 336 supports the industry's most advanced line of cryogenic temperature sensors as manufactured by Lake Shore, including diodes, resistance temperature detectors (RTDs), and thermocouples. The controller's zone tuning feature allows you to measure and control temperatures seamlessly from 300 mK to over 1,500 K by automatically switching temperature sensor inputs when your temperature range goes beyond the usable range of a given sensor. You'll never again have to be concerned with temperature sensor over or under errors and measurement continuity issues. Alarms, relays, and ± 10 V analog voltage outputs are available to help automate secondary control functions.

Another innovative first from Lake Shore. the ability to custom label sensor inputs eliminates the guesswork in remembering or determining the location to which a sensor input is associated. As we strive to maintain increasingly demanding workloads, ease of use and the ability to stay connected from anywhere in the world are critical attributes. With standard Ethernet, USB, and IEEE-488 interfaces and an intuitive menu structure and logic, the Model 336 was designed with efficiency, reliable connectivity, and ease of use in mind. While you may need to leave your lab, Ethernet ensures you'll always be connected to your experiments. The new intuitive front panel layout and keypad logic, bright graphic display, and LED indicators enhance the user friendly front panel interface of the Model 336.

In many applications, the unparalleled feature set of the Model 336 allows you to replace several instruments with one, saving time, money, and valuable laboratory space. Delivering more feedback, tighter control, and faster cycle times, the Model 336 keeps up with increasingly complex temperature measurement and control applications. It is the ideal solution for general purpose to advanced laboratory applications. Put the Model 336 temperature controller to use in your lab and let it take control of your measurement environment.

p.2 Lake Shore Cryotronics, Inc. | t. 614.891.2243 | f. 614.818.1600 | info@lakeshore.com | www.lakeshore.com

Sensor inputs

The Model 336 offers four standard sensor inputs that are compatible with diode and RTD temperature sensors. The field installable Model 3060 thermocouple input option provides support for up to two thermocouple inputs by adding thermocouple functionality to inputs C and D.

Sensor inputs feature a high-resolution 24-bit analog-to-digital converter; each input has its own current source, providing fast settling times. All four sensor inputs are optically isolated from other circuits to reduce noise and to provide repeatable sensor measurements. Current reversal eliminates thermal electromotive force (EMF) errors in resistance sensors. Nine excitation currents facilitate temperature measurement and control down to 300 mK using appropriate negative temperature coefficient (NTC) RTDs. Autorange mode automatically scales excitation current in NTC RTDs to reduce self heating at low temperatures as sensor resistance changes by many orders of magnitude. Temperatures down to 1.4 K can be measured and controlled using silicon or GaAlAs diodes. Software selects the appropriate excitation current and signal gain levels when the sensor type is entered via the instrument front panel. The unique zone setting feature automatically switches sensor inputs, enabling you to measure temperatures from 300 mK to over 1 500 K without interrupting your experiment.

The Model 336 includes standard temperature sensor response curves for silicon diodes, platinum RTDs, ruthenium oxide RTDs, and thermocouples. Non-volatile memory can also store up to 39 200-point CalCurves for Lake Shore calibrated temperature sensors or user curves. A built-in SoftCal algorithm can be used to generate curves for silicon diodes and platinum RTDs that can be stored as user curves. Temperature sensor calibration data can be easily uploaded and manipulated using the Lake Shore curve handler software.

Temperature control

Providing a total of 150 W of heater power, the Model 336 is the most powerful temperature controller available. Delivering very clean heater power, it precisely controls temperature throughout the full scale temperature range for excellent measurement reliability, efficiency, and throughput. Two independent PID control outputs supplying 100 W and 50 W of heater power can be associated with any of the four standard sensor inputs. Precise control output is calculated based on your temperature setpoint and feedback from the control sensor. Wide tuning parameters accommodate most cryogenic cooling systems and many high-temperature ovens commonly used in laboratories. PID values can be manually set for fine control, or the improved autotuning feature can automate the tuning process. Autotune collects PID parameters and provides information to help build zone tables. The setpoint ramp feature provides smooth, continuous setpoint changes and predictable setpoint approaches without the worry of overshoot or excessive settling times. When combined with the zone setting feature, which enables automatic switching of sensor inputs and scales current excitation through ten different preloaded temperature zones, the Model 336 provides continuous measurement and control from 300 mK to 1505 K.

Control outputs 1 and 2 are variable DC current sources referenced to chassis ground. Output 1 can provide 100 W of continuous power to a 25 Ω load or 50 W to a 50 Ω or 25 Ω load. Output 2 provides 50 W to 25 Ω or 50 Ω heater loads. Outputs 3 and 4 are variable DC voltage source outputs providing two ± 10 V analog outputs. When not in use to extend the temperature controller heater power, these outputs can function as manually controlled voltage sources.

Temperature limit settings for inputs are provided as a safeguard against system damage. Each input is assigned a temperature limit, and if any input exceeds that limit, all control channels are automatically disabled.

Interface

The Model 336 is standard equipped with Ethernet, universal serial bus (USB) and parallel (IEEE-488) interfaces. In addition to gathering data, nearly every function of the instrument can be controlled through a computer interface. You can download the Lake Shore curve handler software to your computer to easily enter and manipulate sensor calibration curves for storage in the instruments non-volatile memory.

Ethernet provides the ability to access and monitor instrument activities via the internet from anywhere in the world. The USB interface emulates an RS-232C serial port at a fixed 57,600 baud rate, but with the physical connections of a USB. It also allows you to download firmware upgrades, ensuring the most current firmware version is loaded into your instrument without having to physically change anything.

Each sensor input has a high and low alarm that offer latching and non-latching operation. The two relays can be used in conjunction with the alarms to alert you of a fault condition and perform simple on/off control. Relays can be assigned to any alarm or operated manually.

The ± 10 V analog voltage outputs on outputs 3 and 4 can be configured to send a voltage proportional to temperature to a strip chart recorder or data acquisition system. You may select the scale and data sent to the output, including temperature or sensor units.

- (1) Sensor input connectors
- Terminal block (analog outputs and relays)
- (3) Ethernet interface
- ④ USB interface
- (5) IEEE-488 interface
- 6 Line input assembly
- Output 2 heater
- Output 1 heater
- (9) Thermocouple option inputs

Model 336 rear panel connections

p.3 Lake Shore Cryotronics, Inc. | t. 614.891.2243 | f. 614.818.1600 | info@lakeshore.com | www.lakeshore.com

Configurable display

The Model 336 offers a bright, graphic liquid crystal display with an LED backlight that simultaneously displays up to eight readings. You can show all four loops, or If you need to monitor one input, you can display just that one in greater detail. Or you can custom configure each display location to suit your experiment. Data from any input can be assigned to any of the locations, and your choice of temperature or sensor units can be displayed. For added convenience, you can also custom label each sensor input, eliminating the guesswork in remembering or determining the location to which a sensor input is associated.

A: Sample Space	B: Rad Shield
SP1: 5.2000 K 37%	SPR: 0.0000 K 0% T: Waste Stage
4.6103 K	35.6387 _K
SP4: 0.0000 K 0%	5F3: 0.0000 K 0%

Four input/output display with labels Standard display option featuring all four inputs and associated outputs.

* Sample Space 5.2014 ;		^{d Shield} 27.8	645 κ
L1 ^{A:} Sample Space Setp 273.000 K Heat 0.00% of Low		50.0 20.0 0.0	MOut 0.00%

Two input/output display with labels

Reading locations can be user configured to meet application needs. Here, the input name is shown above each measurement reading along with the designated input letter.

Intuitive menu structure

Logical navigation allows you to spend more time on research and less time on setup.

Model 3060 thermocouple input option

The field installable Model 3060 thermocouple input option adds thermocouple functionality to inputs C and D. While the option can be easily removed, this is not necessary as the standard inputs remain fully functional when they are not being used to measure thermocouple temperature sensors. Calibration for the option is stored on the card so it can be installed in the field and used with multiple Model 336 temperature controllers without recalibration.

Sensor selection

Sensor temperature range (sensors sold separately)

		Model	Useful range	Magnetic field use
Diodes	Silicon diode	DT-670-SD	1.4 K to 500 K	T≥60 K & B ≤ 3 T
	Silicon diode	DT-670E-BR	30 K to 500 K	T≥60 K & B ≤ 3 T
	Silicon diode	DT-414	1.4 K to 375 K	T ≥ 60 K & B ≤ 3 T
	Silicon diode	DT-421	1.4 K to 325 K	T ≥ 60 K & B ≤ 3 T
	Silicon diode	DT-470-SD	1.4 K to 500 K	T ≥ 60 K & B ≤ 3 T
	Silicon diode	DT-471-SD	10 K to 500 K	T ≥ 60 K & B ≤ 3 T
	GaAlAs diode	TG-120-P	1.4 K to 325 K	$T > 4.2 \text{ K \& B} \le 5 \text{ T}$
	GaAlAs diode	TG-120-PL	1.4 K to 325 K	$T > 4.2 \text{ K \& B} \le 5 \text{ T}$
	GaAlAs diode	TG-120-SD	1.4 K to 500 K	$T > 4.2 \text{ K \& B} \le 5 \text{ T}$
Positive temperature	100 Ω platinum	PT-102/3	14 K to 873 K	$T > 40 \text{ K} \& B \le 2.5 \text{ T}$
coefficient RTDs	100 Ω platinum	PT-111	14 K to 673 K	$T > 40 \text{ K} \& B \le 2.5 \text{ T}$
	Rhodium-iron	RF-800-4	1.4 K to 500 K	$T > 77 K \& B \le 8 T$
	Rhodium-iron	RF-100T/U	1.4 K to 325 K	$T > 77 K \& B \le 8 T$
Negative	Cernox™	CX-1010	0.3 K to 325 K ¹	$T > 2 K \& B \le 19 T$
temperature	Cernox™	CX-1030-HT	0.3 K to 420 K ^{1,3}	$T > 2 K \& B \le 19 T$
coefficient RTDs	Cernox™	CX-1050-HT	1.4 K to 420 K ¹	$T > 2 K \& B \le 19 T$
	Cernox™	CX-1070-HT	4 K to 420 K ¹	$T > 2 K \& B \le 19 T$
	Cernox™	CX-1080-HT	20 K to 420 K ¹	$T > 2 K \& B \le 19 T$
	Germanium	GR-300-AA	0.35 K to 100 K ³	Not recommended
	Germanium	GR-1400-AA	1.8 K to 100 K ³	Not recommended
	Carbon-glass	CGR-1-500	1.4 K to 325 K	$T>2$ K & B ≤ 19 T
	Carbon-glass	CGR-1-1000	1.7 K to 325 K ²	$T>2$ K & B ≤ 19 T
	Carbon-glass	CGR-1-2000	2 K to 325 K ²	$T>2$ K & B ≤ 19 T
	Rox™	RX-102	0.3 K to 40 K ³	$T>2$ K & B ≤ 10 T
	Rox™	RX-103	1.4 K to 40 K	$T>2$ K & B ≤ 10 T
	Rox™	RX-202	0.3 K to 40 K ³	$T>2$ K & B ≤ 10 T
Thermocouples	Туре К	9006-006	3.2 K to 1505 K	Not recommended
Option-3060	Type E	9006-004	3.2 K to 934 K	Not recommended
	Chromel-	9006-002	1.2 K to 610 K	Not recommended
	AuFe 0.07%			

¹ Non-HT version maximum temperature: 325 K

² Low temperature limited by input resistance range

³ Low temperature specified with self-heating error: \leq 5 mK

Silicon diodes are the best choice for general cryogenic use from 1.4 K to above room temperature. Silicon diodes are economical to use because they follow a standard curve and are interchangeable in many applications. They are not suitable for use in ionizing radiation or magnetic fields.

Cernox[™] thin-film RTDs offer high sensitivity and low magnetic field-induced errors over the 0.3 K to 420 K temperature range. Cernox sensors require calibration.

Platinum RTDs offer high uniform sensitivity from 30 K to over 800 K. With excellent reproducibility, they are useful as thermometry standards. They follow a standard curve above 70 K and are interchangeable in many applications.

p.4 Lake Shore Cryotronics, Inc. | t. 614.891.2243 | f. 614.818.1600 | info@lakeshore.com | www.lakeshore.com

Typical sensor performance

	Example Lake Shore sensor	Temperature	Nominal resistance/ voltage	Typical sensor sensitivity⁴	Measurement resolution: temperature equivalents	Electronic accuracy: temperature equivalents	Temperature accuracy including electronic accuracy, Calcurve™, and calibrated sensor	Electronic control stability ⁵ : temperature equivalents
Silicon diode	DT-670-C0-13	1.4 K	1.664 V	-12.49 mV/K	0.8 mK	±13 mK	±25 mK	±1.6 mK
	with 1.4H	77 K	1.028 V	-1.73 mV/K	5.8 mK	±76 mK	±98 mK	±11.6 mK
	calibration	300 K	0.5596 V	-2.3 mV/K	4.3 mK	+47 mK	+79 mK	+8.7 mK
		500 K	0.0907 V	-2.12 mV/K	4.7 mK	+40 mK	+90 mK	+9.4 mK
Silicon diode	DT-470-SD-13	1.4 K	1.6981 V	-13.1 mV/K	0.8 mK	±13 mK	±25 mK	±1.6 mK
	with 1.4H	77 K	1.0203 V	-1.92 mV/K	5.2 mK	±68 mK	±90 mK	±10.4 mK
	calibration	300 K	0.5189 V	-2.4 mV/K	4.2 mK	±44 mK	±76 mK	±8.4 mK
		475 K	0.0906 V	-2.22 mV/K	4.5 mK	±38 mK	±88 mK	±9 mK
GaAlAs diode	TG-120-SD	1.4 K	5.391 V	-97.5 mV/K	0.2 mK	±8.8 mK	±21 mK	±0.4 mK
	with 1.4H	77 K	1.422 V	-1.24 mV/K	16 mK	±373 mK	±395 mK	±32 mK
	calibration	300 K	0.8978 V	-2.85 mV/K	7 mK	±144 mK	±176 mK	±14 mK
		475 K	0.3778 V	-3.15 mV/K	6.4 mK	±114 mK	±164 mK	±12.6 mK
100 Ω platinum RTD	PT-103 with	30 K	3.660 Ω	0.191 Ω/K	1.1 mK	±13 mK	±23 mK	±2.2 mK
500 Ω full scale	14J calibration	77 K	20.38 Ω	0.423 Ω/K	0.5 mK	±10 mK	±22 mK	±1.0 mK
		300 K	110.35 Ω	0.387 Ω/K	5.2 mK	±39 mK	±62 mK	±10.4 mK
		500 K	185.668 Ω	0.378 Ω/K	5.3 mK	±60 mK	±106 mK	±10.6 mK
Cernox™	CX-1010-SD	0.3 K	2322.4 Ω	-10785 Ω/K	8.5 µK	±0.1 mK	±3.6 mK	±17 μK
	with 0.3L	0.5 K	1248.2 Ω	-2665.2 Ω/K	26 µK	±0.2 mK	±4.7 mK	±52 μK
	calibration	4.2 K	277.32 Ω	-32.209 Ω/K	140 µK	±3.8 mK	±8.8 mK	±280 μK
		300 K	30.392 Ω	-0.0654 Ω/K	23 mK	±339 mK	±414 mK	±46 mK
Cernox™	CX-1050-SD-HT6	1.4 K	26566 Ω	-48449 Ω/K	20 µK	±0.3 mK	±5.3 mK	±40 μK
	with 1.4M	4.2 K	3507.2 Ω	-1120.8 Ω/K	196 µK	±2.1 mK	±7.1 mK	±392 µK
	calibration	77 K	205.67 Ω	-2.4116 Ω/K	1.9 mK	±38 mK	±54 mK	±3.8 mK
		420 K	45.03 Ω	-0.0829 Ω/K	18 mK	±338 mK	±403 mK	±36 mK
Germanium	GR-300-AA	0.35 K	18225 Ω	-193453 Ω/K	4 µK	±48 μK	±4.2 mK	±8 μK
	with 0.3D	1.4 K	449 Ω	-581 Ω/K	41 µK	±481 μK	±4.7 mK	±82 μK
	Calibration	4.2 K	94 Ω	-26.6 Ω/K	56 µK	±1.8 mK	±6.8 mK	±112 μK
		100 K	2.7 Ω	-0.024 Ω/K	6.3 mK	±152 mK	±175 mK	±12.6 mK
Germanium	GR-1400-AA	1.8 K	15288 Ω	-26868 Ω/K	28 µK	±302 μK	±4.5 mK	±56 μK
	calibration	4.2 K	1689 Ω	-862 Ω/K	91 µK	±900 μK	±5.1 mK	±182 µK
	calibration	10 K	253 Ω	-62.0 Ω/K	73 µK	±1.8 mK	±6.8 mK	±146 µK
	000 4 500	100 K	2.8 Ω	-0.021 Ω/K	7.1 mK	±177 mK	±200 mK	±14.2 mK
Carbon-glass	CGR-1-500	1.4 K	103900 Ω	-520000 Ω/K	13 µK	±0.1 mK	±4.1 mK	±26 μK
	calibration	4.2 K	584.6 Ω	-422.3 Ω/K	63 µK	±0.8 mK	±4.8 mK	±126 μK
	Galibradon	77 K	14.33 Ω	-0.098 Ω/K	4.6 mK	±108 mK	±133 mK	±9.2 mK
Deu [™]	DV 1004 44	300 K	8.55 Ω	-0.0094 Ω/K	16 mK	±760 mK	±865 mK	±32 mK
ROX	KX-102A-AA with 0.3B	0.5 K	3701 0	-54/8 1/K	41 µK	±0.5 MK	±5 MK	±82 μK
	calibration	1.4 K	2005 Ω	-667 12/K	128 µK	±1.4 MK	±6.4 MK	±256 μK
	Galibradon	4.2 K	1370 Ω	-80.3 Ω/K	902 µK	±8 mK	±24 mK	±1.8 mK
Thormoogunlo	Turce V	40 K	1049 Ω	-1.06 Ω/K	62 mK	±500 mK	±537 mK	±124 mK
50 mV	туре к	75 K	-3002.9 µV	10.6 µV/K	20 IIIK	±0.20 K	from Lake Shore	±32 IIIK
Option-3060		300 K	1075.3 µV	40.0 µV/K	10 mK	±0.038 K		±19.6 MK
		600 K	13325 µV	41.7 µV/K	TU MK	±0.184 K		±20 mK
Canacitance	09,501	1505 K	49998.3 µV	36.0 µV/K	1 0 mK	±0.73 K'	Calibration pot available	±22 MK
Option - 3061	03-301	4.∠ N 77 ⊻	0.010E	52 pE/V	1.0 ml/	NA	from Lake Shore	±3.0 IIIK
-,		200 K	10.2 nE	17/ nE/k	2.0 mK			±2.0 IIIK
	1	200 1	13.2 11	1/4 pi/ix	2.3 1111		1	±0.0 min

Typical sensor sensitivities were taken from representative calibrations for the sensor listed
 Control stability of the electronics only, in an ideal thermal system
 Non-HT version maximum temperature: 325 K
 Accuracy specification does not include errors from room temperature compensation

p. 5 Lake Shore Cryotronics, Inc. | t. 614.891.2243 | f. 614.818.1600 | info@lakeshore.com | www.lakeshore.com

Model 336 Specifications

Input specifications

Standard inputs and scanner option Model 3062	Sensor temperature coefficient	Input range	Excitation current	Display resolution	Measurement resolution	Electronic accuracy (at 25 °C)	Measurement temperature coefficient	Electronic control stability ⁸
Diado	Nogativo	0 V to 2.5 V	10 μA ±0.05% ^{9,10}	10 µV	10 µV	±80 μV ±0.005% of rdg	(10 µV + 0.0005% of rdg)/°C	±20 μV
Diode	Negative	0 V to 10 V	10 µA ±0.05% ^{9,10}	100 µV	20 µV	±160 µV ±0.01% of rdg	(20 μV + 0.0005% of rdg)/°C	±40 μV
		0 Ω to 10 Ω	1 mA ¹¹	0.1 mΩ	0.2 mΩ	±0.002 Ω ±0.01% of rdg	(0.01 m Ω + 0.001% of rdg)/°C	±0.4 mΩ
		0 Ω to 30 Ω	1 mA ¹¹	0.1 mΩ	0.2 mΩ	±0.002 Ω ±0.01% of rdg	(0.03 m Ω + 0.001% of rdg)/°C	±0.4 mΩ
		0 Ω to 100 Ω	1 mA ¹¹	1 mΩ	2 mΩ	±0.004 Ω ±0.01% of rdg	(0.1 m Ω + 0.001% of rdg)/°C	±4 mΩ
PTC RTD	Positive	0 Ω to 300 Ω	1 mA ¹¹	1 mΩ	2 mΩ	±0.004 Ω ±0.01% of rdg	(0.3 m Ω + 0.001% of rdg)/°C	±4 mΩ
		0 Ω to 1 kΩ	1 mA ¹¹	10 mΩ	20 mΩ	$\pm 0.04 \ \Omega \pm 0.02\%$ of rdg	(1 m Ω + 0.001% of rdg)/°C	±40 mΩ
		0 Ω to 3 kΩ	1 mA ¹¹	10 mΩ	20 mΩ	$\pm 0.04 \ \Omega \pm 0.02\%$ of rdg	(3 m Ω + 0.001% of rdg)/°C	±40 mΩ
		0 Ω to 10 kΩ	1 mA ¹¹	100 mΩ	200 mΩ	$\pm 0.4 \ \Omega \pm 0.02\%$ of rdg	(10 m Ω + 0.001% of rdg)/°C	±40 mΩ
		0 Ω to 10 Ω	1 mA ¹¹	0.1 mΩ	0.15 mΩ	±0.002 Ω ±0.06% of rdg	(0.01 m Ω + 0.001% of rdg)/°C	±0.3 mΩ
		0 Ω to 30 Ω	300 µA ¹¹	0.1 mΩ	0.45 mΩ	$\pm 0.002 \Omega$ $\pm 0.06\%$ of rdg	(0.03 m Ω + 0.0015% of rdg)/°C	±0.9 mΩ
	Negative	0 Ω to 100 Ω	100 µA ¹¹	1 mΩ	1.5 mΩ	$\pm 0.01 \ \Omega \pm 0.04\%$ of rdg	(0.1 m Ω + 0.001% of rdg)/°C	±3 mΩ
		0 Ω to 300 Ω	30 µA ¹¹	1 mΩ	4.5 mΩ	$\pm 0.01 \ \Omega \pm 0.04\%$ of rdg	(0.3 m Ω + 0.0015% of rdg)/°C	±9 mΩ
NTC RTD 10 mV		0 Ω to 1 kΩ	10 µA11	10 mΩ	15 mΩ +0.002% of rdg	$\pm 0.1 \Omega \pm 0.04\%$ of rdg	(1 m Ω + 0.001% of rdg)/°C	±30 mΩ ±0.004% of rdg
		0 Ω to 3 kΩ	3 μA ¹¹	10 mΩ	45 mΩ +0.002% of rdg	$\pm 0.1 \ \Omega \pm 0.04\%$ of rdg	(3 m Ω + 0.0015% of rdg)/°C	±90 mΩ ±0.004% of rdg
		0 Ω to 10 kΩ	1 μA ¹¹	100 mΩ	150 mΩ +0.002% of rdg	$\pm 1.0 \ \Omega \ \pm 0.04\%$ of rdg	(10 m Ω + 0.001% of rdg)/°C	$\pm 300 \text{ m}\Omega \pm 0.004\%$ of rdg
		0 Ω to 30 kΩ	300 nA ¹¹	100 mΩ	450 mΩ +0.002% of rdg	$\pm 2.0 \ \Omega \pm 0.04\%$ of rdg	(30 m Ω + 0.001% of rdg)/°C	$\pm 900 \text{ m}\Omega \pm 0.004\%$ of rdg
		0 Ω to 100 kΩ	100 nA ¹¹	1Ω	1.5 Ω +0.005% of rdg	$\substack{\pm 10.0 \ \Omega \ \pm 0.04\%}{\text{of rdg}}$	(100 m Ω + 0.002% of rdg)/°C	±3 Ω ±0.01% of rdg

Thermocouple option Model 3060	Sensor temperature coefficient	Input range	Excitation current	Display resolution	Measurement resolution	Electronic accuracy (at 25 °C)	Measurement temperature coefficient	Electronic control stability ⁸
Thermocouple 3060	Positive	±50 mV	NA	0.1 µV	0.4 µV	±1 µV ±0.05% of rdg ¹²	(0.1 µV + 0.001% of rdg)/°C	±0.8 μV

Capacitance option Model 3061	Sensor temperature coefficient	Input range	Excitation current	Display resolution	Measurement resolution	Electronic accuracy (at 25 °C)	Measurement temperature coefficient	Electronic control stability ⁸
Capacitance P	Positive or	0.1 nF to 15 nF	3.496 kHz 1 mA square wave	0.1 pF	0.05 pF	±50 pF ±0.1% of rdg	2.5 pF/°C	0.1 pF
3061	negative	1 nF to 150 nF	3.496 kHz 10 mA square wave	1 pF	0.5 pF	±50 pF ±0.1% of rdg	5 pF/°C	1 pF

⁸ Control stability of the electronics only, in ideal thermal system
 ⁹ Current source error has negligible effect on measurement accuracy
 ¹⁰ Diode input excitation can be set to 1 mA
 ¹¹ Current source error is removed during calibration
 ¹² Accuracy specification does not include errors from room temperature compensation

p. 6 Lake Shore Cryotronics, Inc. | t. 614.891.2243 | f. 614.818.1600 | info@lakeshore.com | www.lakeshore.com

Sensor input configuration

	Diode/RTD	Thermocouple
Measurement type	4-lead differential	2-lead differential, room tem- perature compensated
Excitation	Constant current with current reversal for RTDs	NA
Supported sensors	Diodes: Silicon, GaAlAs RTDs: 100 Ω Platinum, 1000 Ω Platinum, Germanium, Carbon-Glass, Cernox™, and Rox™	Most thermocouple types
Standard curves	DT-470, DT-670, DT-500-D, DT-500-E1, PT-100, PT-1000, RX-102A, RX-202A	Type E, Type K, Type T, AuFe 0.07% vs. Cr, AuFe 0.03% vs. Cr
Input connector	6-pin DIN	Screw terminals in a ceramic

Thermometry

Number of inputs 4 (8 with scanner option)

Input configuration Inputs can be configured from the front panel to accept any of the supported input types. Thermocouple and capacitance inputs require an optional input card that can be installed in the field.

Supported option cards Thermocouple (3060), capacitance (3061), or scanner (3062) **Option slots** 1

Isolation Sensor inputs optically isolated from other circuits but not each other A/D resolution 24-bit

Input accuracy Sensor dependent, refer to Input Specifications table

Measurement resolution Sensor dependent, refer to Input Specifications table Maximum update rate 10 rdg/s on each input, 5 rdg/s when configured as 100 kΩ NTC RTD with reversal on, 2 rdg/s on each scanned input (scanner option only)

Autorange Automatically selects appropriate NTC RTD or PTC RTD range User curves Room for 39 200-point CalCurves™ or user curves

SoftCal™ Improves accuracy of DT-470 diode to ±0.25 K from 30 K to 375 K; improves accuracy of platinum RTDs to ± 0.25 K from 70 K to 325 K; stored as user curves Math Maximum and minimum

Filter Averages 2 to 64 input readings

Control

Control outputs 4

Heater outputs (Outputs 1 & 2)

 $\textbf{Control type} \ \textbf{Closed loop digital PID with manual heater output or open loop}$ Update rate 10/s

Tuning Autotune (one loop at a time), PID, PID zones Control stability Sensor dependent, see Input Specifications table PID control settings

Proportional (gain) 0 to 1000 with 0.1 setting resolution Integral (reset) 1 to 1000 (1000/s) with 0.1 setting resolution

Derivative (rate) 1 to 200% with 1% resolution

Manual output 0 to 100% with 0.01% setting resolution

Zone control 10 temperature zones with P, I, D, manual heater out, heater range, control channel, ramp rate

Setpoint ramping 0.1 K/min to 100 K/min

Output 1

	25 Ω setting	50 Ω setting	
Туре	Variable DC current source		
D/A resolution	16-	-bit	
Max power	100 W	50 W	
Max current	2 A	1 A	
Voltage compliance	50 V	50 V	
Heater load for max	25 Ω	50 Ω	
power			
Heater load range	10 Ω to 100 Ω		
Ranges	3 (decade steps in power)		
Heater noise	0.12 µA RMS (dominated by line frequency and its harmonics		
Grounding	Output referenced to chassis ground		
Heater connector	Dual banana		
Safety limits	Curve temperature, power up he	eater off, short circuit protection	

Output 2

	25 Ω setting	50 Ω setting			
Туре	Variable DC current source				
D/A resolution	16-bit				
Max power	50 W	50 W			
Max current	1.41 A	1 A			
Voltage compliance	35.4 V	50 V			
Heater load for max	25 Ω	50 Ω			
power					
Heater load range	10 Ω to	ο 100 Ω			
Ranges	3 (decade steps in power)				
Heater noise	0.12 µA RMS (dominated by line frequency and its harmonics)				
Grounding	Output referenced to chassis ground				
Heater connector	Dual banana				
Safety limits	Curve temperature, power up heater off, short circuit protection				

Unpowered analog outputs (Outputs 3 & 4)

Control type Closed loop PID, PID zones, warm up heater mode, manual output, or monitor output

Tuning Autotune (one loop at a time), PID, PID zones

Control stability Sensor dependent, see Input Specifications table

PID control settings

Proportional (gain) 0 to 1000 with 0.1 setting resolution

- Integral (reset) 1 to 1000 (1000/s) with 0.1 setting resolution
- Derivative (rate) 1 to 200% with 1% resolution

Manual output 0 to 100% with 0.01% setting resolution Zone control 10 temperature zones with P, I, D, manual heater out, heater range, control

channel, ramp rate

Setpoint ramping 0.1 K/min to 100 K/min

Warm up heater mode settings

Warm up percentage 0 to 100% with 1% resolution

Warm up mode Continuous control or auto-off

Monitor output settings

Scale User selected

> Data source Temperature or sensor units

- Settings Input, source, top of scale, bottom of scale, or manual
- Type Variable DC voltage source

Update rate 10/s

Range ±10 V

Resolution 16-bit, 0.3 mV

Accuracy ±2.5 mV

Noise 0.3 mV RMS

Minimum load resistance 1 kΩ (short-circuit protected) Connector Detachable terminal block

p.7 Lake Shore Cryotronics, Inc. | t. 614.891.2243 | f. 614.818.1600 | info@lakeshore.com | www.lakeshore.com

Front panel

 $\mbox{Display 8-line by 40-character}$ (240 \times 64 pixel) graphic LCD display module with LED backlight Number of reading displays 1 to 8

Display units K, °C, V, mV, Ω Reading source Temperature, sensor units, max, and min

Display update rate 2 rdg/s

Temperature display resolution 0.0001° from 0° to 99.9999°, 0.001° from 100° to 999.999°, 0.01° above 1000°

Sensor units display resolution Sensor dependent, to 6 digits

Other displays Input name, setpoint, heater range, heater output, and PID Setpoint setting resolution Same as display resolution (actual resolution is sensor dependent)

Heater output display Numeric display in percent of full scale for power or current Heater output resolution 0.01%

Display annunciators Control input, alarm, tuning

LED annunciators Remote, Ethernet status, alarm, control outputs

Keypad 27-key silicone elastomer keypad

Front panel features Front panel curve entry, display contrast control, and keypad lock-out

Interface

IEEE-	488.2	
	Capabilities	SH1, AH1, T5, L4, SR1, RL1, PP0, DC1, DT0, C0, E1
	Reading rate	To 10 rdg/s on each input
	Software support	LabVIEW [™] driver (see www.lakeshore.com)
USB		
	Function	Emulates a standard RS-232 serial port
	Baud rate	57,600
	Connector	B-type USB connector
	Reading rate	To 10 rdg/s on each input
	Software support	LabVIEW [™] driver (see www.lakeshore.com)
Ether	net	
	Function	TCP/IP, web interface, curve handler, configuration backup, chart recorder
	Connector	RJ-45
	Reading rate	To 10 rdg/s on each input
	Software support	LabVIEW [™] driver (see www.lakeshore.com)
Alarr	ns	
	Number	4, high and low for each input
	Data source	Temperature or sensor units
	Settings	Source, high setpoint, low setpoint, deadband, latching or non-latching, audible on/off, and visible on/off
	Actuators	Display annunciator, beeper, and relays
Relay	/S	
	Number	2
	Contacts	Normally open (NO), normally closed (NC), and common (C)
	Contact rating	30 VDC at 3 A
	Operation	Activate relays on high, low, or both alarms for any input, or manual mode
	Connector	Detachable terminal block

General

Ambient temperature 15 °C to 35 °C at rated accuracy; 5 °C to 40 °C at reduced accuracy

Power requirement 100, 120, 220, 240 VAC, ±10%, 50 or 60 Hz, 250 VA Size 435 mm W \times 89 mm H \times 368 mm D (17 in \times 3.5 in \times 14.5 in), full rack Weight 7.6 kg (16.8 lb) Approval CE mark, RoHS

Ordering information

Part number	Description
336	4 diode/RTD inputs and 4 control outputs, including one dual banana jack heater input connector (106-009), four 6-pin DIN plug sensor input mating connectors (G-106-233), one 10-pin terminal block (G-106-750), a calibration certificate and a user's manual
336-3060	Model 336 with a 3060 option card installed
336-3061	Model 336 with a 3061 option card installed
336-3062	Model 336 with a 3062 option card installed
3060	2-thermocouple input option, uninstalled
3061	Capacitance input option for 350/336, uninstalled
3062	4-channel scanner option for diodes and RTD sensors for 350/336, uninstalled

Please indicate your power/cord configuration:

- 1 100 V—U.S. cord (NEMA 5-15)
- 2 120 V-U.S. cord (NEMA 5-15)
- **3** 220 V—Euro cord (CEE 7/7) **4** 240 V—Euro cord (CEE 7/7)
- 5 240 V—U.K. cord (BS 1363) 6 240 V—Swiss cord (SEV 1011)
- 7 220 V-China cord (GB 1002)

Accessories

6 8

C C

201	1 m (3.3 ft long) IEEE-488 (GPIB) computer interface cable
	assembly
001-336	CalCurve [™] , factory installed—the breakpoint table from a
	calibrated sensor stored in the instrument (extra charge fo
	additional sensor curves)
AL-336-CERT	Instrument recalibration with certificate
AL-336-DATA	Instrument recalibration with certificate and data

All specifications are subject to change without notice

©2015 Lake Shore Cryotronics, Inc. All rights reserved.

The technical and pricing information contained herein is subject to change at any time.

Windows is a registered trademark of Microsoft, Inc.

All other trademarks or service marks noted herein are either property of Lake Shore Cryotronics, Inc., or their respective companies.

062515

WRG Active Wide Range Gauge

The Wide Range Gauge (WRG) family offers the capability of single port pressure measurement in the range atmosphere to 10° mbar with a linear output. Its a compact solution, halving the space and connectivity hardware requirement, which can be all important in many applications. The WRG has many novel features, including a new patented striker, pushbutton calibration and set point controls and comprehensive diagnostics. The WRG is a cost-effective vacuum management solution when used either with a Edwards controller or directly integrated into the system controls.

Features & Benefits

- Microprocessor signal processing gives seamless transition between Pirani and magnetron outputs as well as linear output (log pressure scale)
- D-type version including cable strain relief and enhanced ingress protection - IP44
- Low magnetic field version (SL) available for sensitive
 applications e.g. mass spectrometry and electron microscopy
- Easily programmed set point covering entire measuring range
- Magnetron uses an advanced patented technique for highly reliable striking, even at high vacuum or in relatively contaminated conditions

Dimensions

Applications

- Any vacuum system where there is a need to measure pressure over a wide range. The WRG with an AGD represents a very simple and cost effective means of achieving this.
- The linear output and equation make WRG's an attractive option for industrial OEM's where the gauge may be directly integrated into the process controller.
- The WRG is suitable for a wide range of HV and UHV applications, however if your process will spend a significant amount of time between 5x10⁻⁴ and 5x10⁻³mbar then Edwards recommend using independent APG100 Pirani and AIM Penning gauges, as this will improve gauge reliability for your application.

Performance Curves

Shop online at www.edwardsvacuum.com

Technical Data

Pressure range	Atmosphere to 10 ⁻⁹ mbar/Torr
Accuracy *	Typically $\pm 15\% < 100$ mbar and $\pm 30\% < 10^{-3}$ mbar
Maximum over pressure	6 bar absolute (87 psia)
Power supply	+14.5 to +36 V d.c.
Power consumption	2 W maximum
Output signal	1.8 to 10.2 V d.c.
Adjustments	Atmosphere and setpoint
Set point	Open collector transistor
Maximum voltage	40 V d.c.
Current	100 mA maximum
Temperature range	
Operating	+5 to +60 °C
Storage	0 to +70 °C
Materials exposed to vacuum (Both NW and CF versions)	Stainless steel (AISI 304, 316, 321, 347), Fluoroelastomer, soda lime glass, Tungsten, trace of Nickel and Nickel Iron
Internal volume	26 cm ³
Weight	0.8 kg
External interface connector	8-way FCC68 / RJ45 Socket
Interface cables	Use range of active gauge cables
Standards	
Electromagnetic compatibility	EN 61326 Industrial Location, Class B emissions
Enclosure rating	IP40
Pin allocation **	
1. Power supply positive	5. Signal common
2. Power supply common	6. Set-point output
3. Gauge output	7. Atmosphere calibration
4. Gauge identification	8. Not connected

9.9

* Accuracy is reduced at the limits of the measuring range. ** Not shown on diagram

Ordering Information

Product Description	Order No.
WRG-S-NW25	D14701000
WRG-S-DN40CF	D14703000
WRG-S-NW25, Certificated	D1470100C
WRG-S-DN40CF, Certificated	D1470300C
WRG-D-NW25	D14702000
WRG-SL-NW25	D14711000
WRG-SL-NW25, Certificated	D1471100C
Accessories & Spares	Order No.
0.5M Active Gauge Cable	D40001005
100M Active Gauge Cable Assembly	D40001999
10M Active Gauge Cable	D40001100
15M Active Gauge Cable	D40001150
1M Active Gauge Cable	D40001010
25M Active Gauge Cable	D40001250
3M Active Gauge Cable	D40001030
50M Active Gauge Cable	D40001500
5M Active Gauge Cable	D40001050
NW25 Centering Ring 3D Baffle Viton	D02110000
Spares Kit WRG Electrode Assy	D14701802
Spares Kit WRG Full Body Tube	D14701804
Spares Kit WRG Pirani Tube	D14701803
Surge Protector Box	D40006000
WRG Body Tube Assy DN40CF	D14703801
WRG Body Tube Assy NW25	D14701801
WRG D Adapter Cable 9-Way D/Fcc68	D40003100
WRG-D Elect & Mag Housing NW25	D14702800
WRG-S Elect & Mag Housing NW25	D14701800
WRG-SL Elect & Mag Housing NW25	D14711800

1 Page

Shop online at www.edwardsvacuum.com

