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Naissance de I'astronomie X

e 1962: Fusée Aerobee 170
* But: Détecter des rayons X de la Lune
* Collimateur et compteur proportionnel




Scorpio X-1

* Prix Nobel de Physiqgue 2002 pour Riccardo Giacconi
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Uhuru (1970-1973)

of view indicated are FWHM. The full width of the band of sky scanmed, o Use offsel of detecion and
the [aFECiie values of the helds ol view are laken into accounl, B 1277

Deux collimateurs, observation de tout le ciel

Fic. 2. —Band of the sky swept by the two detecton during one revolution of the sabellite. The Gelds



Premiere carte du ciel en rayons X

.,

339 sources
Surtout dans le
plan de la galaxie



Télescopes a rayons X

* Un télescope produit —

|i|

des images par I
réflexion R —

* Les rayons X ne se
refléchissent
(normalement) pas

Optical Light X-ray Light

mirrar surfac
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Reéeflexion totale

n2=1.0 n2<1

ni=1.5 n1=1.0

total intermal reflection

Argent



Réflectivité des rayons X
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Focalisation des rayons X
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A ‘Telescope’ for Soft X-Ray Astronomy

Riccarno Graccont

American Seience and Engineering, Inc
Cambridge, Ma. isebts
AND
Bruno Rosst
s Institute of Technology
Cambridge, Massachusetts

With the development of artificial satellites
it has become possible to observe soft X rays
from extraterrestrial sources. The purpose of
this note is to describe the design of

‘telescope’ and to analyz

teristics.
The instrument consists of one or several

parabolic mirrors on which the X rays impinging
at nearly grazin

s undergo total reflection.
The possibility of using opties of this type has
been ussed in the past in connection with
X-ray microscopy [Kirkpairick and Pattee, 1957;
Trurnit, 1946]. These discussions have remained
of purely theoretical interest, owing to the ¢
culty of eo
of the e\\[h
rm:od lw»r* r‘Lﬂuu uns, lm‘wwr, are greatly

e

mctinw sufficiently accurate mirrors

Let us consider first a narrow section of a
parabolic mirror whose plane is at the d stance 1
from the focus of the paraboloid, ig. 1).
Rays parallel to the axis are concentrated by
the mirror into a point at 7. It can be shown
that, on a first approximation, a parallel beam
of rays, forming a small angle, «, with the axis,
are concentrated on a circle in the focal plane
whose center is at F and whose rad S R = la.
Thus, a detector of radius R in the foeal plane
will record all r:
ing with the axis

In the actual d
necess:

triking the mirror and form-
ngles less than R/1

zn of the instrument it is
Y to consider two limitations: (1) for
each wavelength, and for each material, the

angle of the 1i1L|(]Mlt rays with the reflecting
bUT"lL must be smaller than a certain value
6, so that the reflection coefficient will be of (m

Fig |
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Focalisation des rayons X
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Téelescopes en rayons X




ROSAT (1990-1999)

18’811 sources

(60x UHURU)




La Lune vue par ROSAT
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Une analogie

RAIN (PHOTON
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CCD dans les rayons X

* Ecap ~ 1.1 eV (unité d’énergie), correspondant a I'énergie d’'un
photon infrarouge
— Un seul électron est arraché et collecté

* Exray ~ 1 keV, soit ~ 1000 fois plus

- L’électron arraché a suffisamment d’énergie pour arracher plusieurs
centaines d’autres électrons

- Plus I'énergie est grande, plus le nombre d’électrons arrachés est grand
- On peut ainsi mesurer I'énergie de chaque photons!



Flux Density [nJy]
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Chandra et XMM-Newton (1999)
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Cassiopela A (Chandra)




La Nébuleuse du Crabe (Chandra)




Les amas de galaxie

Amas de Coma

Plus de 1000 galaxies

Dispersion des vitesses
~1000 km/s



Masse de Coma

e Si chaqgue étoile est identique au Solell
- 1le =1 Mo
— Muisible = 3-101 Mo
* Masse gravifique nécessaire pour faire tourner des
galaxies a 1000 km st (théoreme du viriel)
— Ecvota = — %2 Epotal
— Mrotal = 2 Rotar <V2>/ G = 5-10%5 Mo
= Mrotar > Muisible



Coma en rayons X

% P iSe  akiea Coma Cluster
B T PO S - 0.5-2.0 keV

XMM




Coma en rayons X

* Un électron plongé dans un amas doit avoir une
énergie cinétique de: Ec = Gm;M/ R
- ~ 10 keV pour Coma, soit I'’energie d'un rayon X
- Ec=3/2kT - T=108K

. &V
* Rayonnement de freinage S
(Bremsstrahlung) N
- Ly=cC-n2 Q"\)M __________ T
x «®
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Equilibre hydrostatique

 Equation des gaz parfaits: P = nkT
- n et T peuvent étre obtenus par rayons X
» Equilibre hydrostatique:

dP:—GM(r)n(r)
dr 2

* On peut donc obtenir M(r)
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Bilan de masse

* Bilan de masse de Coma:
- Etoiles : 3-1013 M 2%
- Gas: 2-101 M 11%
— Matiére noire: 1.3-:10° M, 87%



El Gordo (Chandra)




PKS 0745-19 (Chandra)




L'amas du Boulet (Chandra+W.L)
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Temps de refroidissement

e t=E/Lx~6000T”n?tans
*nN~10%cm=3,T~1078K

-t~ 10 ans
« Au centre de 'amas, n /7, T\ : t << 1010 ans

- Les amas devraient étre froids au centre
* Condensation rapide du gaz
 Formation d’étoiles intense

- Mais ce n’est pas observe
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Injection d’énergie

Trou noir supermassif au centre de I'amas



Jets relativistes de trous noirs

IC 4296



Micro-calorimetre

Tharmomator

X-Ray Foaag

Absorber
* Heat Capacity, C

=« Thermal Link
Thermal Conductance, G

Heat Sink
(< 0.1 K) "'__"‘



ASTRO-H/Hitomi

2016

XRISM (2023)




Transition Edge Sensors
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L’'amas de Persée vu par Hitomi
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S, counts s~ keV~!

L’'amas de Persée vu par Hitomi
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Conclusions

* L'astronomie X permet de voir les objets tres chaud (> 1
millions de degres) et les objets ou la densité d’énergie est
tres grande

* Les amas de galaxies sont les objects lies les plus grands
de I’'Univers, et sont particulierement bien observables en
rayons X

* |Is constituent des sondes essentielles de la composition
de notre Univers
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