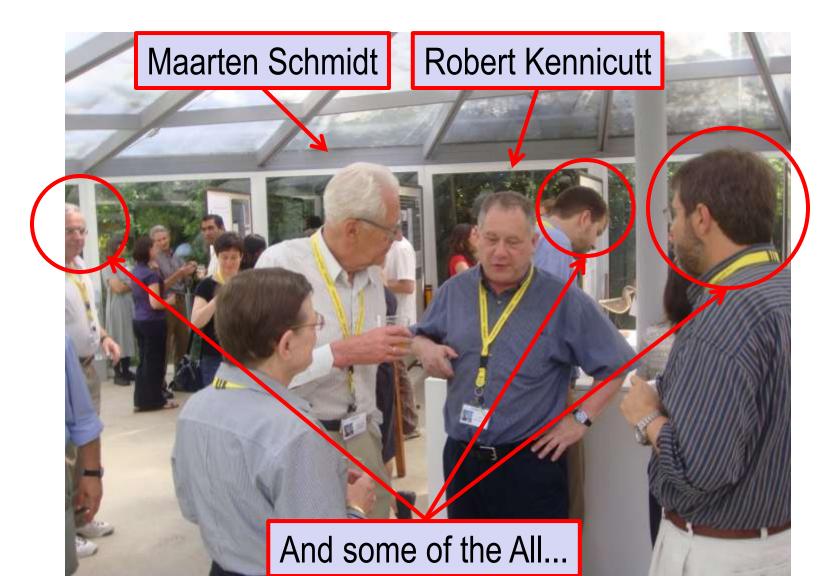
PART IV

Star Formation

<u>1. Kennicutt-Schmidt and All,</u> <u>All, All</u>



WARNING! **Anyone calling KS** relation a "law" will be **immediately forcefully** removed from the lecture room.

History: Why KS?

THE ASTROPHYSICAL JOURNAL, 498:541-552, 1998 May 10 © 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE GLOBAL SCHMIDT LAW IN STAR-FORMING GALAXIES

ROBERT C. KENNICUTT, JR.¹ Steward Observatory, University of Arizona, Tucson, AZ 85721 Received 1997 October 6; accepted 1997 December 23

THE STAR FORMATION LAW IN GALACTIC DISKS

ROBERT C. KENNICUTT, JR.¹ Steward Observatory, University of Arizona Received 1988 November 29; accepted 1989 February 23

VOLUME 129

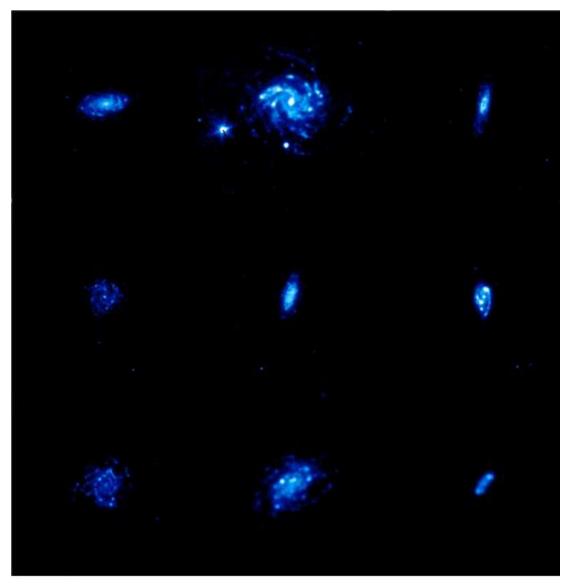
MARCH 1959

NUMBER 2

THE RATE OF STAR FORMATION

MAARTEN SCHMIDT* Mount Wilson and Palomar Observatories Carnegie Institution of Washington, California Institute of Technology Received October 29, 1958

What Stars Form From?

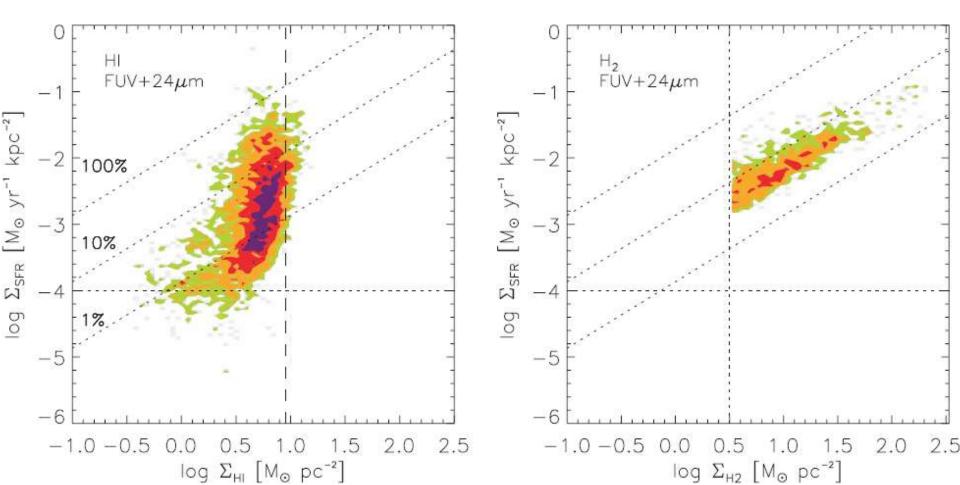


F. Walter & The HI Nearby Galaxy Survey

SFR distributions from 24 µm SINGS + GALEX

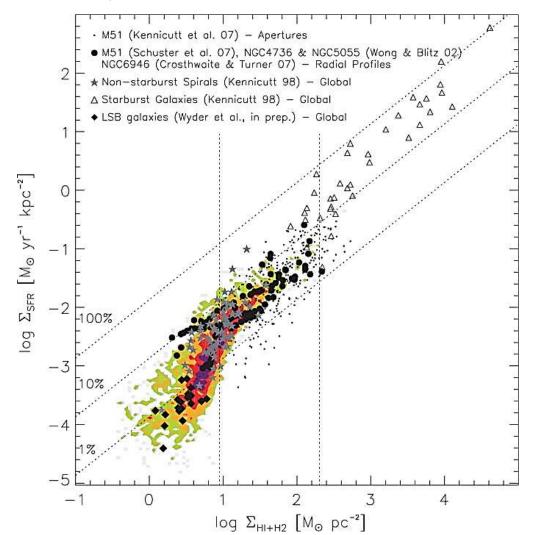
Why THINGS Matter

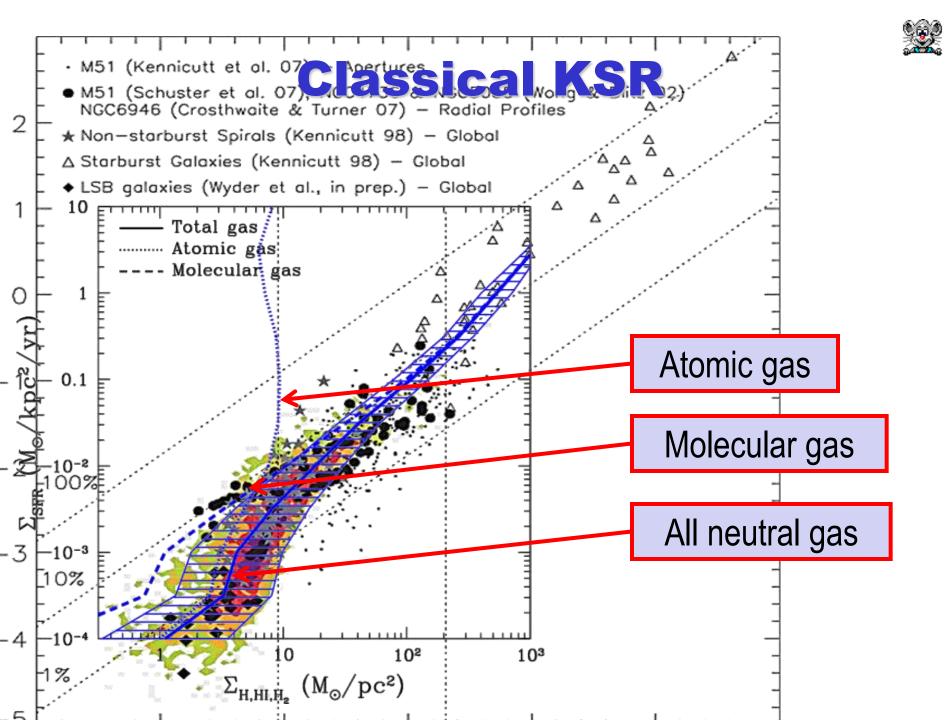
• The THINGS survey unambiguously proved what everyone knew in their hearts: *stars form from molecular gas*.



Classical KSR

• The one and only plot of the classical KSR in this course!





Depletion Time

• It is convenient to think about star formation on large scales in terms of the gas depletion time $\tau_{\rm SF}$:

$$\Sigma_{\rm SFR} \equiv \left. \frac{d\Sigma_*}{dt} \right|_{\rm SF} = \frac{1.36\Sigma_{\rm H_2}}{\tau_{\rm SF}}$$

Quiz: This whole thinking is wrong. Why?

Density is only defined on a particular spatial scale.

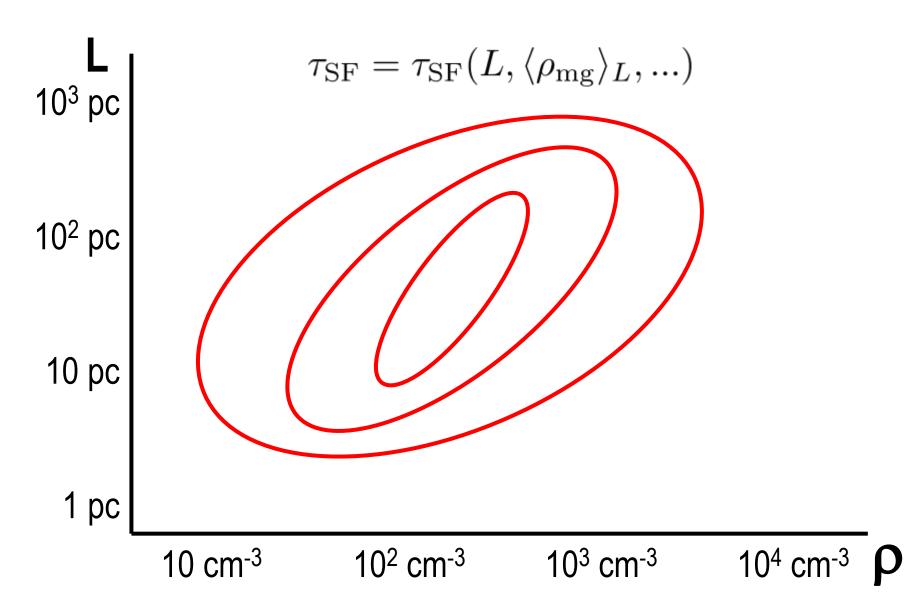
$$o = \frac{M}{V} = \frac{M}{L^3}$$

How We Should Think About Star Formation

- Take some spatial scale *L*.
- Average all densities on this scale only them are meaningfully defined.

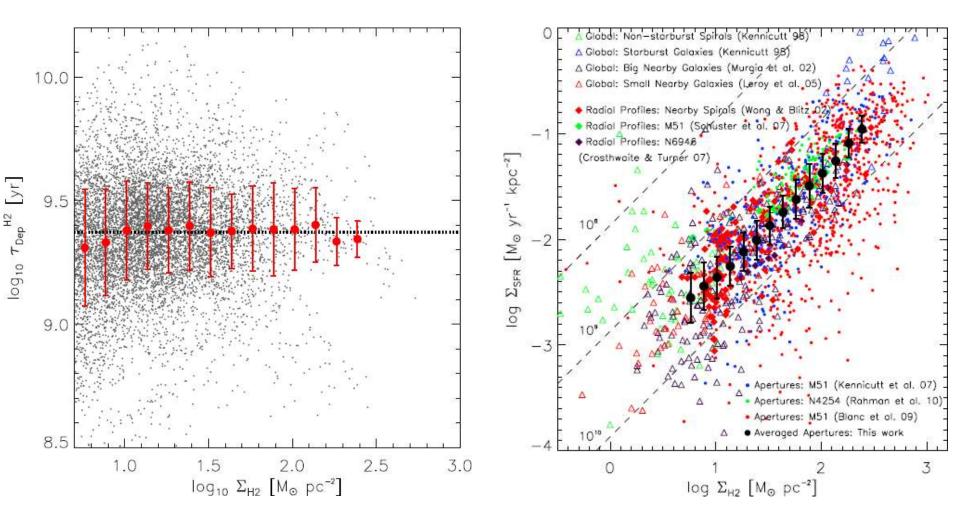
$$\langle \dot{\rho}_* \rangle_L = \frac{\langle \rho_{\rm mg} \rangle_L}{\tau_{\rm SF}}$$

• With $\tau_{\rm SF} = \tau_{\rm SF}(L, \langle \rho_{\rm mg} \rangle_L, ...)$.



Large Scales, z~0

• THINGS galaxies: $L > 500 \text{kpc}, \tau_{\text{SF}} \approx 2 \text{Gyr}.$



A Side Note

• For a log-normal distribution with a median μ and dispersion σ :

$$p(x)dx = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln(x) - \ln(\mu))^2}{2\sigma^2}\right) \frac{dx}{x}$$

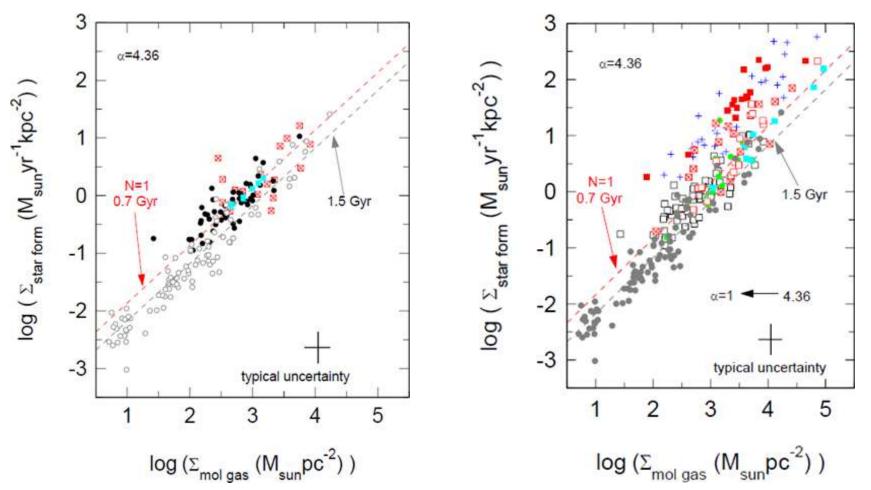
$$\bar{x} \equiv \int x p(x) dx = \mu \exp(\sigma^2/2)$$

• Hence, for $\sigma \approx 0.25 \mathrm{dex}$

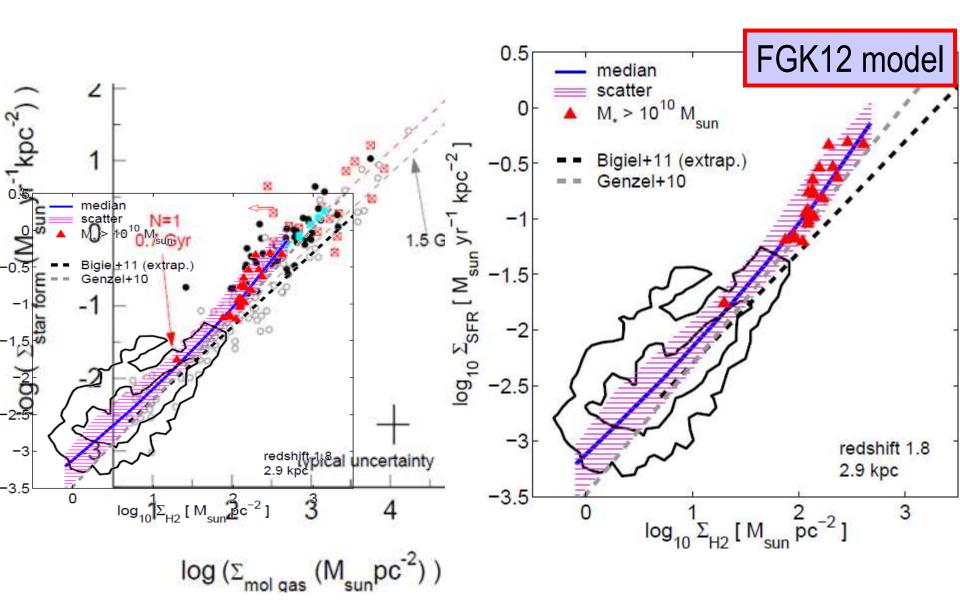
 $\bar{\tau}_{\rm SF} \approx 0.8 \tau_{\rm SF,med}$

High Redshift, z~2-3

• At high redshifts the depletion time is also constant, although may be a factor ~2-3 shorter.

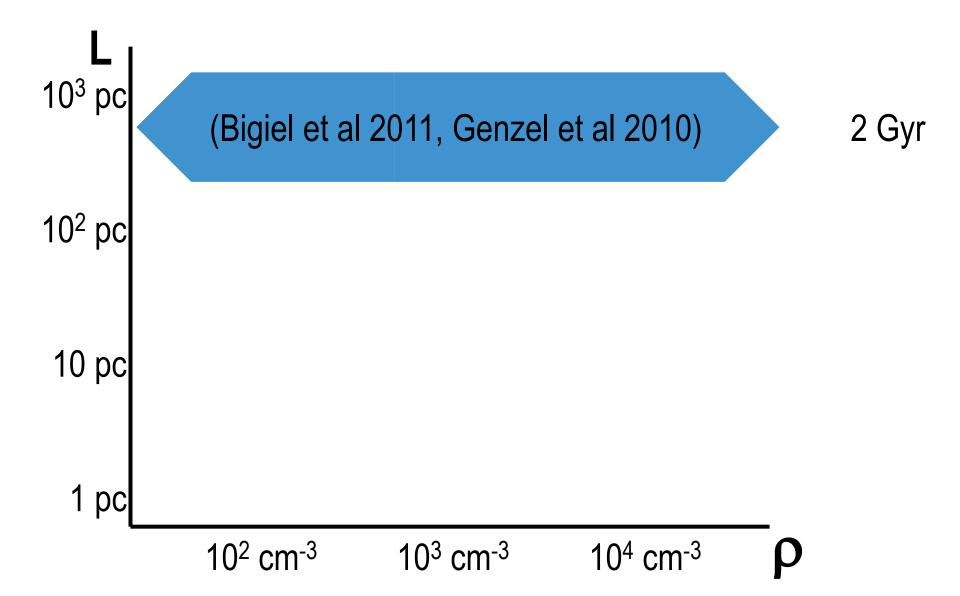


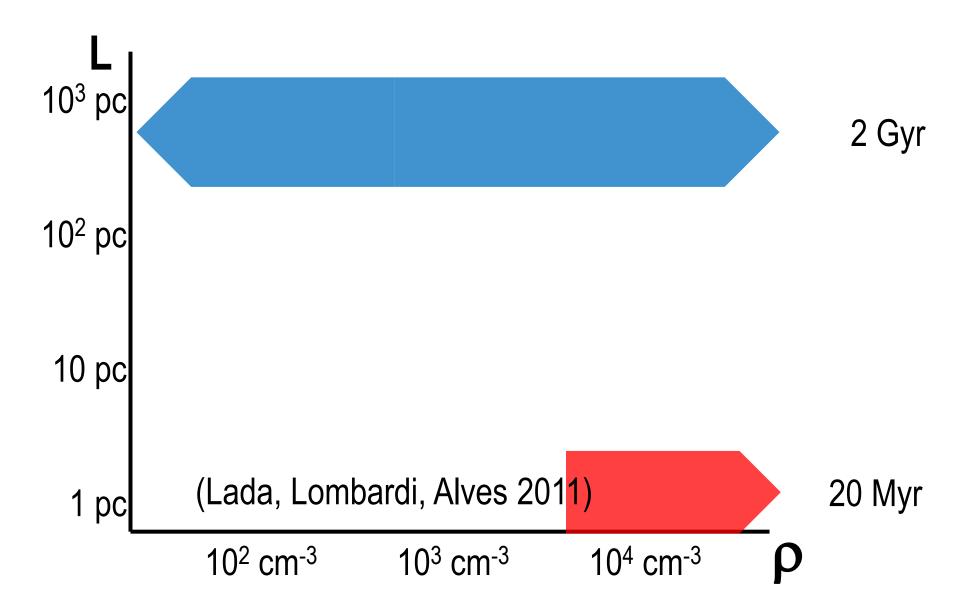
Variable Depletion Time or X_{co}?



Variable Depletion Time or X_{co}?

- High-redshift galaxies have higher SFR per unit CO luminosity.
- Whether this reflects a higher $X_{\rm CO}$ factor or a shorter $\tau_{\rm SF}$ is a big open question.





Constant Efficiency per Free-Fall Time

• The most common ansatz used in modern simulations is the constant efficiency per free-fall time:

$$\tau_{\rm SF}(L, \langle \rho_{\rm mg} \rangle_L, ...) \to \frac{\tau_{\rm ff}(\langle \rho_{\rm mg} \rangle_L)}{\epsilon_{\rm SF}} = \epsilon_{\rm SF}^{-1} \sqrt{\frac{3\pi}{32G \langle \rho_{\rm mg} \rangle_L}}$$

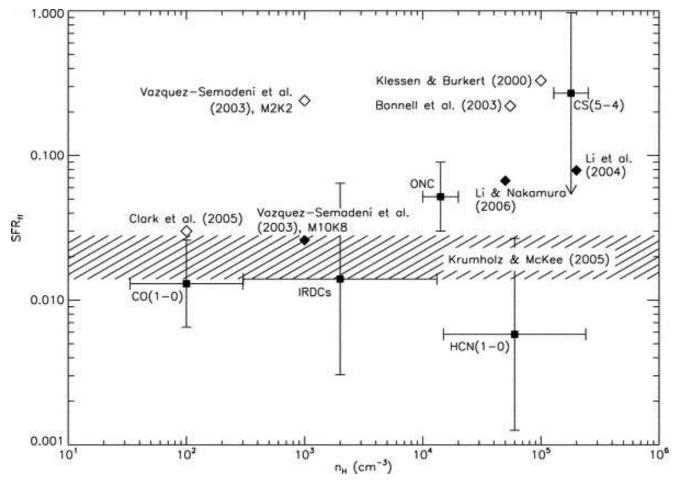
• or, in a more familiar form:

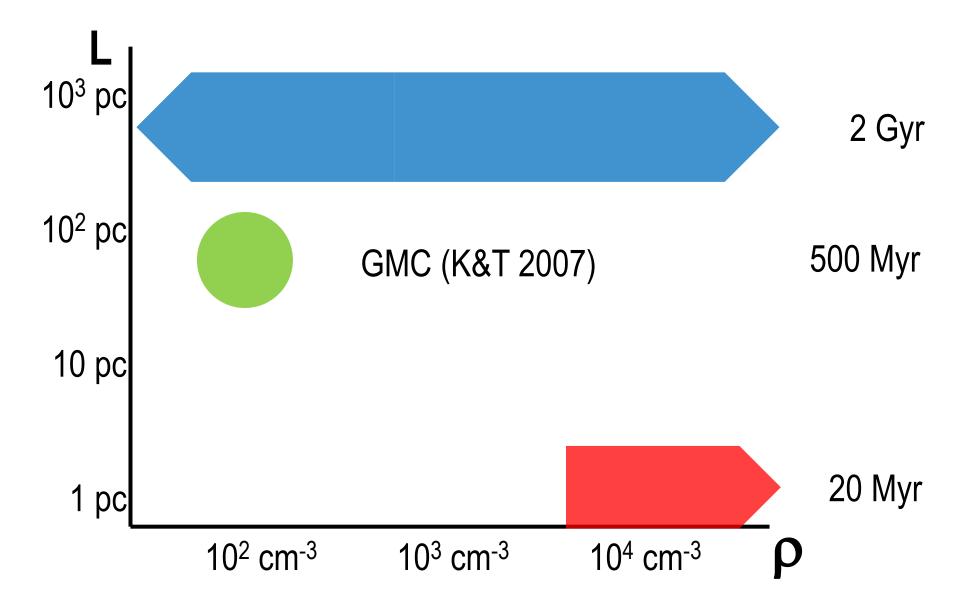
$$\langle \dot{\rho}_* \rangle_L = \epsilon_{\rm SF} \frac{\langle \rho_{\rm mg} \rangle_L}{\tau_{\rm ff}} = \epsilon_{\rm SF} \frac{\langle \rho_{\rm mg} \rangle_L^{3/2}}{\sqrt{3\pi/(32G)}}$$

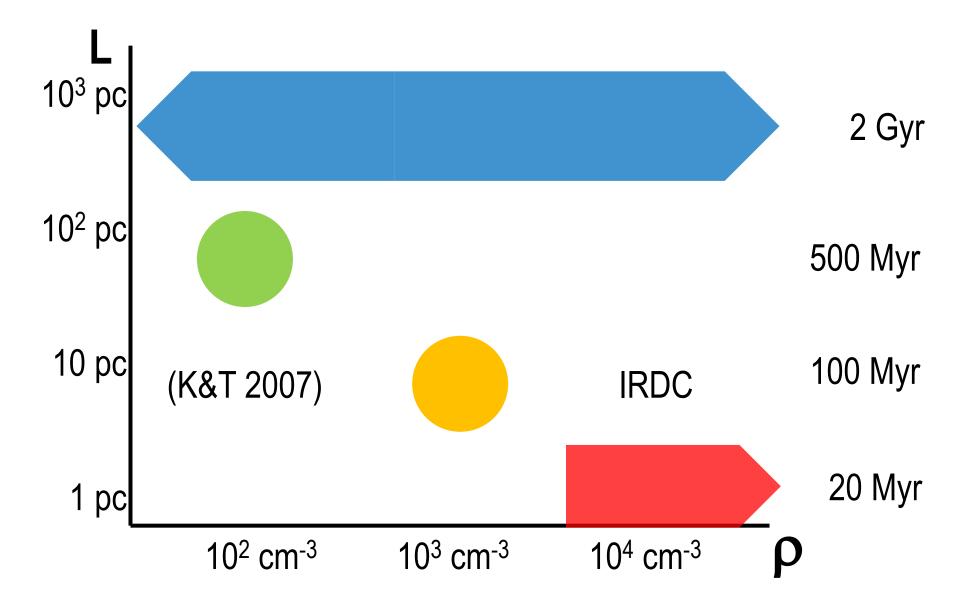
 This is just an ansatz: molecular clouds are turbulent and the free-fall time is meaningless on scales above molecular cores (~0.1pc).

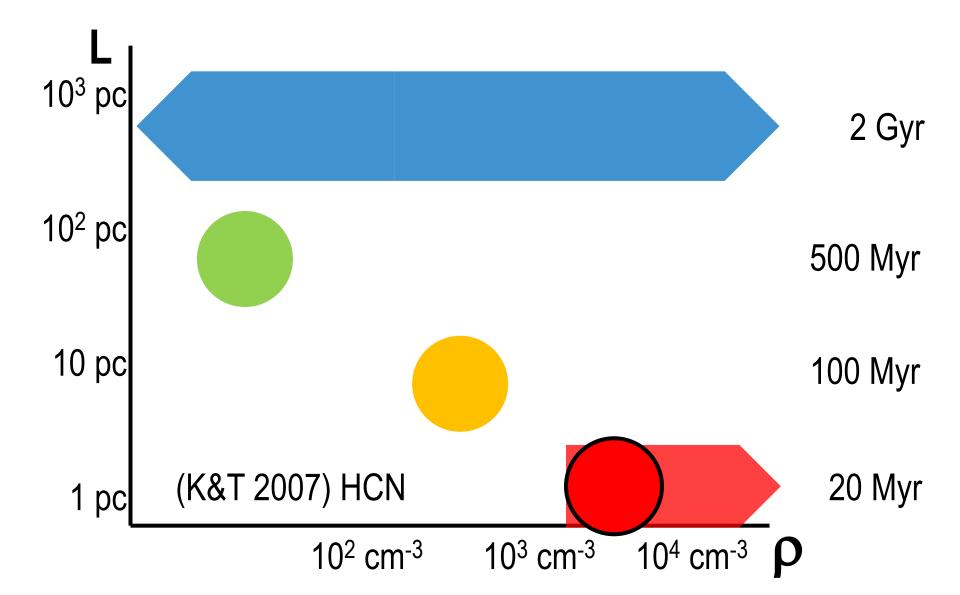
Constant Efficiency per Free-Fall Time

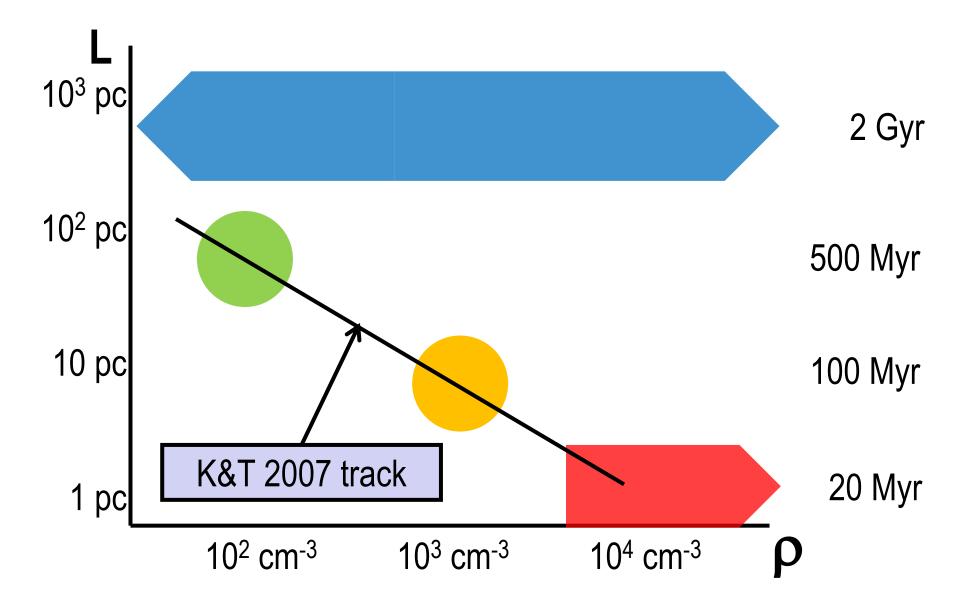
• Krumholz & Tan (2007) did not invent the "constant efficiency per free-fall" ansatz, but they advocated it strongly.



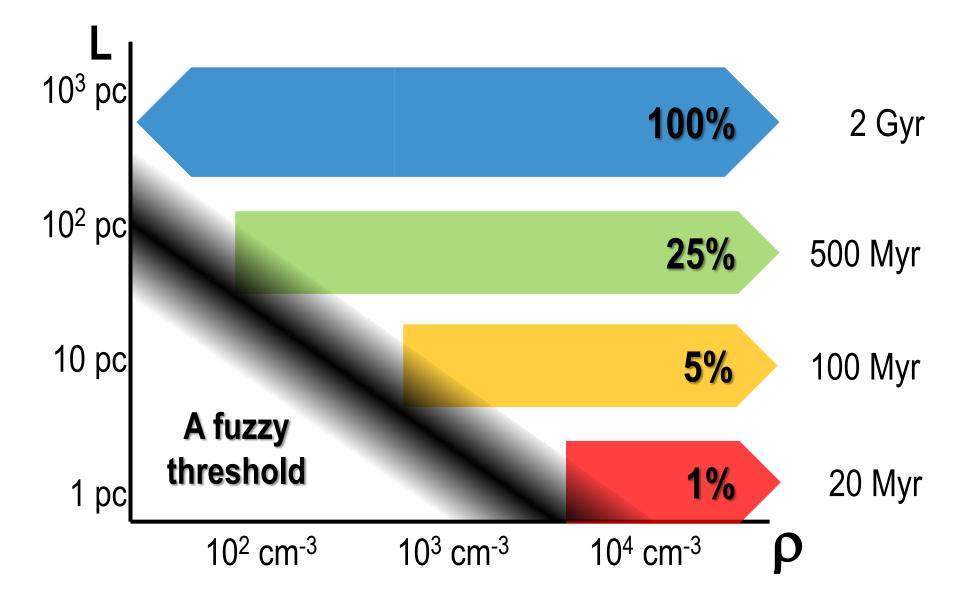








Is Life Simple?

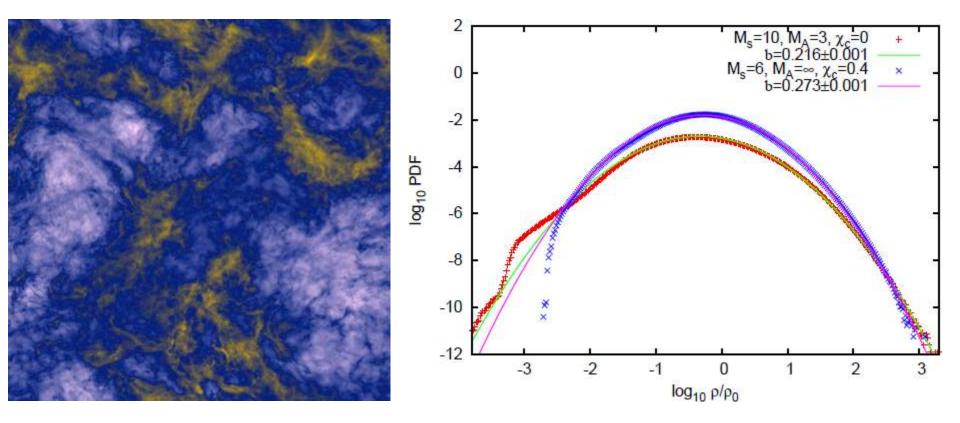


Summary

$$\langle \dot{\rho}_* \rangle_L = \frac{\langle \rho_{\rm mg} \rangle_L}{\tau_{\rm SF}}, \quad \tau_{\rm SF} = \tau_{\rm SF}(L, \langle \rho_{\rm mg} \rangle_L, ...)$$

- Density is only defined on some scale, ho=M/V .
- On large scale (<< 100pc) the depletion time is independent of density, but may depend on other factors (redshift, "normal" vs "merger" mode, etc).
- The "constant efficiency per free-fall" ansatz ($\dot{\rho}_* \propto \rho_{
 m mg}^{3/2}$) is just an **ansatz**, the free-fall time is not a relevant physical quantity in turbulent molecular clouds.
- Existing observational constraints are equally consistent with $\tau_{\rm SF} = \tau_{\rm SF}(L)$ ansatz.

<u>2. Excursion Set Formalism</u> <u>in Star Formation</u>



 Density distribution in simulations of supersonic turbulence is known to be closely approximated by log-normal.

ESF as a Theory of SF

- Started by Padoan & Norlund (2002, 2007), picked up by Hennebelle & Chabrier (2008) and developed further by Phil Hopkins in a recent series of papers.
- Builds on the analogy with cosmology: Gaussian linear density field of LSS vs Gaussian $\ln(\rho/\rho_0)$ field in molecular clouds.
- Just from the general principles, it is obvious to every cosmologist that such an approach cannot work...

- Also known as Press-Schechter formalism.
- Consider a box $B_1(L)$ of size L with some field $\delta(\vec{x})$ in it; the field is *random* if a value of δ in the same relative location in some other box $B_2(L)$ cannot be determined from the corresponding value of δ in B_1 .
- Take Fourier transform of $\delta(\vec{x})$: $\delta_{\vec{k}} = \int d^3x \delta(\vec{x}) e^{i\vec{k}\vec{x}}$
- The random field $\delta(\vec{x})$ is Gaussian with the *power* spectrum P(k) if:

$$\langle \delta_{\vec{k}_1} \delta^*_{\vec{k}_2} \rangle = P(k_1) \delta^3_D(\vec{k}_1 - \vec{k}_2)$$

• Reversing the Fourier transform:

$$\delta(\vec{x}) = \int d^3k \sqrt{P(k)} \lambda_{\vec{k}} e^{-i\vec{k}\vec{x}}$$

• with

$$\langle \lambda_{\vec{k}_1} \lambda^*_{\vec{k}_2} \rangle = \delta_D^3(\vec{k}_1 - \vec{k}_2)$$

• Sometimes, $\lambda_{\vec{k}}$ are (incorrectly) called "phases".

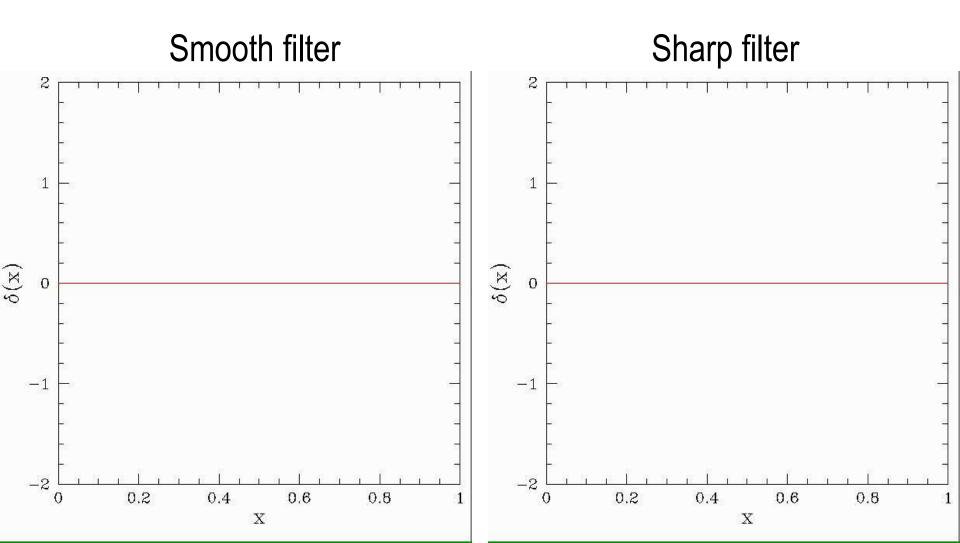
$$\delta(\vec{x}) = \int d^3k \sqrt{P(k)} \lambda_{\vec{k}} e^{-i\vec{k}\vec{x}}$$
(A)

• For some P(k) integral in (A) diverges for large k; then it is treated as a limit of the smoothed field

$$\delta(\vec{x}) \equiv \lim_{R \to 0} \delta(\vec{x}; R) = \int d^3k \sqrt{P(k)} \lambda_{\vec{k}} W(kR) e^{-i\vec{k}\vec{x}}$$

• where W(kR) is a low-pass filter (W(0) = 1, $W(\infty) = 0$).

- Excursion Set formalism considers $\delta(\vec{x}; R)$ as a function of R and compares it with some "barrier" function b(R).
- Obviously, $\delta(\vec{x}, R = \infty) = 0$.
- As R decreases, $\delta(\vec{x}; R)$ starts deviating from zero. For some value of R it may cross the barrier for the first time.
- The fraction of all $\delta(\vec{x}; R)$ that cross the barrier at R is called the "first crossing distribution".



- For example, in the Press-Schechter formalism the barrier is constant, $b = \delta_L(t_f) = 1.69$.
- Then the first crossing distribution becomes (½ x) the mass function of dark matter halos with $M_h = 4\pi \bar{\rho}_m R^3/3$.
- Excursion Set formalism may be used for many other purposes (ask Sasha Kaurov about using it for modeling reionization).

ESF as a Theory of SF

- In modeling SF Excursion Set formalism can be used for several goals:
 - First crossing distribution gives the mass function of largest bound objects – molecular clouds.
 - Last crossing distribution* gives the mass function of smallest bound objects – molecular cores/stars.
 - It is useful for other purposes too: distribution of holes in the ISM, clustering of stars, etc.
- But wait, what should the barrier be?

* Guessing what it is is left as a home exercise.

Collapse Barrier

Quiz:

- A. I do know what the collapse barrier is.
- B. I do not know what the barrier could be.

$$\omega^{2} = \kappa^{2} - 2\pi G \frac{\bar{\Sigma}|k|}{1 + |k|h} + (\sigma_{t}^{2}(k) + c_{S}^{2})k^{2}$$

• The collapse barrier is simply the condition for gravitational instability for a disk of finite thickness (recall, the Jeans condition is hidden inside this one).

ESF as a **Theory** of **SF**

 Excursion Set formalism makes predictions that are computable "analytically" and match a large variety of observations unexpectedly well.

Mgolb/Nb]go.

philichus (Enoc)

Log[M / Msonic

• The rest is for Ralf to explain...

) = 2, M_h = 100 Observed (Salpeter)

Log[dN/dlogM] [M_{gas}/M_{sonic}]

2

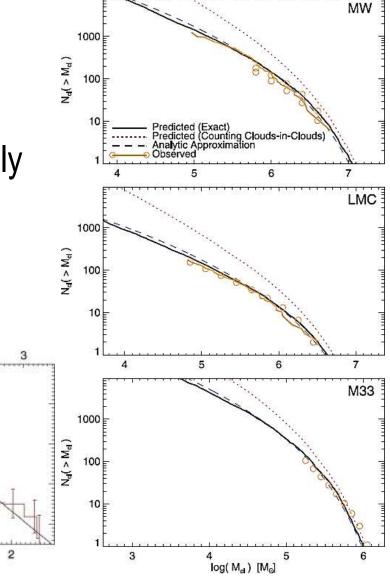
0

-3

-2

-1

Log[M / M_{sonic}]



The End

