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Basics of collisionless 
simulations



Relaxation time of an N-body system 

Transverse momentum change:

Particles encountered in
one crossing in a ring

Different encounters add incoherently:

Coloumb logarithm:



Typical specific energy of a particle:

Crossing time through the system:

Typical specific energy of a particle:

Relaxation time:

But what about the Coloumb logarithm?

Maximal scattering: Minimal scattering:

Relaxation time of N-body system:



Small globular star cluster:

Stars in a galaxy:

Dark matter particles in a galaxy  (100 GeV WIMP):

In an N-body model of a collisionless system, we must ensure that the simulated time is 
smaller than the relaxation time

The mother of all collisionless systems!

Behaves as a collisionless system.

This is a collisional system, and stellar encounters are 
important for the evolution.



We assume that the only appreciable interaction of dark matter 
particles is gravity
 

COLLISIONLESS DYNAMICS

Because there are so many dark matter particles, it's best to describe the system in terms of 
the single particle distribution function

Poisson-Vlasov System

Collisionless 
Boltzmann equation

Phase-space is conserved along each characteristic (i.e. particle orbit).

The number of stars in galaxies is so large that the two-body relaxation time by far exceeds the Hubble 
time. Stars in galaxies are therefore also described by the above system.

This system of partial differential equations is very difficult (impossible) to solve directly in non-trivial cases.  

There are so many dark matter particles that they do not scatter locally on 
each other, they just respond to their collective gravitational field



The N-body method uses a finite set of particles to sample the 
underlying distribution function
 

"MONTE-CARLO" APPROACH TO COLLISIONLESS DYNAMICS

We discretize in terms of N particles, which approximately move along characteristics 
of the underlying system.

The need for gravitational softening:

Prevent large-angle particle scatterings and the 
formation of bound particle pairs.

Helps to ensure that the two-body relaxation time is 
sufficiently large.

Allows the system to be integrated with low-order 
integration schemes.

Needed for faithful 
collisionless behavior}

1/2



But how should we pick the gravitational softening length?

Let's first look at typical cosmological halos

Specific binding energy of a softened 
particle pair at vanishing distance

Specific energy of 
particles in the halo

For collisionless behavior, we must at least have:

Relations between 
halo virial quantities:



Let's introduce the mean particle distance: (for simplicity in a EdS universe)

Hence we get the condition:

But if we also recall the relaxation time of dark matter in halos:

We see that halos with well below 100 particles are typically always affected by 
relaxation over a Hubble time.

Compromise in practice:

For:



Derivation of the collisionless 
cosmological equation of motion

Newtonian equation of motion

Introduction of comoving coordinates

Carry out a variable transformation of the equations...

peculiar 
velocity

Hubble
flow



Rewriting yields...

And then...

Recalling the Friedmann equation (in the matter dominated era)

yields the equation of motion in the form:



We define the peculiar gravitational potential as

This implies:

● Motion is created by density fluctuations around the background
● Infinite space is no problem any more

So that we finally get the equations of motion as:



Two conflicting requirements complicate the study of hierarchical 
structure formation
 

DYNAMIC RANGE PROBLEM FACED BY COSMOLOGICAL SIMULATIONS 

Want small particle mass 
to resolve internal structure 
of halos

Want large volume to 
obtain respresentative 
sample of universe

Problems due to a small box size: 
Fundamental mode goes non-linear soon after 
the first halos form.    Simulation cannot be 
meaningfully continued beyond this point.

No rare objects (the first halo, rich galaxy 
clusters, etc.) 

Problems due to a large particle mass: 
Physics cannot be resolved.

Small galaxies are missed.

At any given time, halos exist on a large range of mass-scales !

need large N
where N is the particle number 



Several questions come up when we try to use the 
N-body approach for collisionless simulations

How do we compute the gravitational forces 
efficiently and accurately?

How do we integrate the orbital equations in time?

How do we generate appropriate initial conditions?

How do we parallelize the simulation?

Note: The naïve 
computation of the 
forces is an N2 - task.½



Cosmological N-body simulations have grown 
rapidly in size over the last three decades
 

"N" AS A FUNCTION OF TIME

Computers double their 
speed every 18 months 
(Moore's law)

N-body simulations 
have doubled their size 
every 16-17 months

Recently, growth has 
accelerated further.

1 month with direct 
summation

10 million years with
direct summation

9 billion years with
direct summation MXXL



Time integration issues



Time integration methods

Want to numerically integrate an ordinary differential equation (ODE)Want to numerically integrate an ordinary differential equation (ODE)

Note: y can be a vector

Example: Simple pendulum

A numerical approximation to the ODE is a set of values
at times

There are many different ways for obtaining this.



Explicit Euler method

● Simplest of all

● Right hand-side depends only on things already known, explicit method

● The error in a single step is O(t2), but for the N steps needed for a finite 
time interval, the total error scales as O(t) !

● Never use this method, it's only first order accurate.

Implicit Euler method

● Excellent stability properties

● Suitable for very stiff ODE

● Requires implicit solver for yn+1

● But still low order



Implicit mid-point rule

● 2nd order accurate

● Time-symmetric, in fact symplectic

● But still implicit...

Runge-Kutta methods
 
whole class of integration methods

2nd order accurate

4th order accurate.



The Leapfrog

“Drift-Kick-Drift” version “Kick-Drift-Kick” version

● 2nd order accurate

● symplectic

● can be rewritten into time-centered formulation

For a second order ODE:



The leapfrog is behaving much better 
than one might expect...
 

INTEGRATING THE KEPLER PROBLEM



When compared with an integrator of the same 
order, the leapfrog is highly superior
INTEGRATING THE KEPLER PROBLEM



Even for rather large timesteps, the leapfrog maintains 
qualitatively correct behaviour without long-term secular trends
INTEGRATING THE KEPLER PROBLEM



What is the underlying mathematical reason for the very good 
long-term behaviour of the leapfrog ?
HAMILTONIAN SYSTEMS AND SYMPLECTIC INTEGRATION

The Hamiltonian structure of the system can be preserved in the integration if each step is 
formulated as a canonical transformation. Such integration schemes are called symplectic.

Poisson bracket: Hamilton's equations

Hamilton operator System state vector

Time evolution operator

The time evolution of the system is a continuous canonical transformation generated by the Hamiltonian.



Symplectic integration schemes can be generated by applying 
the idea of operating splitting to the Hamiltonian
THE LEAPFROG AS A SYMPLECTIC INTEGRATOR

Separable Hamiltonian

Drift- and Kick-Operators

The drift and kick operators are symplectic transformations of phase-space !

The Leapfrog

Drift-Kick-Drift:

Kick-Drift-Kick:

Hamiltonian of the 
numerical system:



When an adaptive timestep is used, much 
of the symplectic advantage is lost
INTEGRATING THE KEPLER PROBLEM

Going to KDK reduces the error by a factor 4, 
at the same cost !



For periodic motion with adaptive timesteps, the DKD leapfrog shows 
more time-asymmetry than the KDK variant
LEAPFROG WITH ADAPTIVE TIMESTEP

force forceforce

KDK

forwards backwards

asymmetry

force forceforce

DKD

forwards backwards

asymmetry

force



Collisionless dynamics in an expanding universe is described by a 
Hamiltonian system
THE HAMILTONIAN IN COMOVING COORDINATES

Conjugate momentum

Drift- and Kick operators

Choice of timestep

For linear growth, fixed step in log(a) 
appears most appropriate...

timestep is then a constant 
fraction of the Hubble time
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