
High performance computing and numerical modeling
Volker Springel

Plan for my lectures

43rd Saas Fee Course
Villars-Sur-Ollon, March 2013

Lecture 1: Collisional and collisionless N-body dynamics

Lecture 2: Gravitational force calculation

Lecture 3: Basic gas dynamics

Lecture 4: Smoothed particle hydrodynamics

Lecture 5: Eulerian hydrodynamics

Lecture 6: Moving-mesh techniques

Lecture 7: Towards high dynamic range

Lecture 8: Parallelization techniques and current computing trends

Signal propagation with hyperbolic equations

THE ADVECTION EQUATION

Let's take the continuity equation
and simplify it a bit by assuming
constant velocity and 1 dimension:

We get a simple advection equation:

The solution is:

(figure by Kees Dullemond)

Straightforward finite difference discretization schemes for the
advection problem can be tried....

CENTERED DIFFERENCE APPROCH FOR THE ADVECTION EQUATION

Centered difference discretization:

This yields the update formula:

xi-2 xi-1 xi+2xi xi+1

tn

tn+1

tn+2

Such attempts tend to fail, often being spectacularly unstable

CENTERED DIFFERENCE ADVECTION OF A STEP FUNCTION

Initial conditions:

Evolved state:

(figure by Kees Dullemond)

Upwinding can render the simple advection algorithm stable

UPWIND DIFFERENCING APPROACH APPLIED TO THE ADVECTION EQUATION

Let's assume:

Now modify the finite difference
approximation to be skewed to
the upwind side:

This yields the update formula:

u > 0

xi-2 xi-1 xi+2xi xi+1

tn

tn+1

tn+2

wind

However,
there is considerable
“numerical diffusion”

Using upwind differencing, the simple update formula yields stable
and robust results

UPWIND ADVECTION OF A STEP FUNCTION

(figure by Kees Dullemond)

Effectively, upwind differencing adds some diffusion to the central
differencing scheme

ANALYSING UPWIND DIFFERENCING

● Once a bit of diffusion is added to the
centered scheme, it becomes stable!

● The diffusion vanishes in the limit of Δx→0.
It is purely numerical diffusion.

upwind
difference

centered
difference

diffusion term with
diffusion constant

State vector

Euler equations

Flux vector

Finite volume discretization:

Cell averages

But how to compute the fluxes through cell surfaces?

The Euler equations as a set of hyperbolic conservation laws

FLUX FORMULATION OF THE EULER EQUATIONS

Evolution equation

The timesteps in many finite volume scheme can be viewed as a
sequence of Reconstruct-Evolve-Average (REA) steps

REA SCHEMES

Reconstruct: Using the cell-
averaged quantities, determine
the run of these quantities
everywhere in the cell.

Evolve: The reconstructed state is then evolved forward in time by Δt. In
Godunov's approach, this is done by treating each cell interface as a piece-
wise constant initial value problem which is solved with a Riemann solver.

Average: The evolved solution of the previous step is averaged at time Δt to
compute new average states U n+1 in each cell in a conservative fashion.
Then the cycle repeats.

The Riemann problem as basis for Godunov schemes

CALCULATION OF THE GODUNOV FLUX

ρL, PL, vL ρR, PR, vR

Assume piece-wise constant left and
right states for the fluid

Calculate the self-similar time
evolution (Riemann problem)

Sample the solution along x/ t=0,
which yields the Godunov flux

x

t

shock wave

contact
discontinuity rarefaction

wave

unperturbed right
state

unperturbed left
state

ρF, PF, vF

sampling

Fortunately, the averaging step doesn't have to be done explicitly

OBTAINING THE AVERAGED STATE

Let's integrate the Euler equation
over a cell and in time:

This yields:

But the Riemann solution is self-similar, with the Godunov flux being independent of time:

Hence the new spatially average state is simply given by:

Two issues are left open:

● How can this be extended to
multiple dimensions?

● How can we reach an accuracy higher
than 1st order in space and time?

Operator splitting can be used to extend the scheme to multiple
dimensions

FROM 1D TO 3D WITH LITTLE EFFORT

This can be written also in the following form:

Let's write out the full Euler for Cartesian coordinates:

Now let's split up the equation into three separate equations:

generates evolution under F

Approximate solution can be obtained as:

The sequence of dimensionally split sweeps must be alternated to
reach higher-order accuracy in time

TIME-ADVANCE IN DIMENSIONALLY SPLIT SCHEMES

Simple operator split in two dimensions:

For second-order accuracy in time, symmetrize the action of the operators:

One may also, e.g., use:

This readily generalizes to three dimensions:

One can also calculate the fluxes directly in multi-D
and arrive at an unsplit scheme

UNSPLIT FINITE-VOLUME UPDATES
Unstructured mesh case

To achieve second-order accuracy, one can use a
piece-wise linear reconstruction

LINEAR RECONSTRUCTION AND GRADIENT LIMITATION

r

Slope limiting procedure:

x

r
conservative linear
reconstruction

x

Example slope limiter:

● Needed to prevent creation of new
extrema, preventing spurious oscillations

● Reduces the order of the scheme at
discontinuities

The gradients can be used to predict the fluid state directly at
the interfaces

LINEAR EXTRAPOLATION TO CELL BOUNDARIES

But how do we
get the time
derivative?

Spatial extrapolation:

Temporal extrapolation to mid-step:

This combined extrapolation needs to be done for
the full fluid state for second-order accuracy:

The MUSCL-Hancock scheme is a particularly simple
second-order extension of Godunov's method

GETTING THE TIME EXTRAPOLATION FROM THE SPATIAL GRADIENTS

● At discontinuities, the slope limiter will suppress the derivative, making the scheme
automatically first order

● We recall also Godunov's theorem, according to which any linear algorithm that
does not produce new extrema (aka TVD) can be at most first order.

Euler equation:

This means we can estimate the time
derivate based on the current state of a
cell and the spatial gradient estimates:

MUSCL-Hancock prediction:

gradient estimate

Thermal energy, temperature and entropy are treated in a
fundamentally different way in Eulerian codes compared to SPH

QUESTIONS ABOUT ENTROPY AND FRIENDS IN EULERIAN CODES

Why is there no artificial viscosity needed in the MUSCL scheme?

How is entropy produced?

● Temperature is defined as difference between total
energy and kinetic energy (note: cold flow problem)

● Entropy is not followed explicitly – one simply
assigns the entropy according to what the
conservation laws dictate

● The break-down of the differential form of the
equations at shocks is circumvented by using the
integrated flux-form of the equations

Some notes may help to clarify this:

Approximate Riemann solvers are often used for
computational efficiency

EXAMPLE: ROE SOLVER FOR ISOTHERMAL GAS IN TWO DIMENSIONS

2d state vector for
isothermal gas:

The x-sweep part of
the equations is:

We want to solve for the x-sweep:

To derive an approximate Riemann solver, we want to linearize the equation:

Roe's suggestion:

The Jacobian is approximated as
being constant and only a
function of left and right states.

Eigenstructure of the linearized isothermal equations:

Roe's flux:

Eigenvalues:

Eigenvectors:

Expand the jump in states in the eigenbasis:

Linearized solution is easily obtained.

Expand the jump in states in the eigenbasis:

x

tλ1 λ3
λ2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

