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Lecture 1: Collisional and collisionless N-body dynamics

Lecture 2: Gravitational force calculation

Lecture 3: Basic gas dynamics

Lecture 4: Smoothed particle hydrodynamics

Lecture 5: Eulerian hydrodynamics

Lecture 6: Moving-mesh techniques

Lecture 7: Towards high dynamic range

Lecture 8: Parallelization techniques and current computing trends



Signal propagation with hyperbolic equations
 

THE ADVECTION EQUATION

Let's take the continuity equation 
and simplify it a bit by assuming 
constant velocity and 1 dimension:

We get a simple advection equation:

The solution is:

(figure by Kees Dullemond)



Straightforward finite difference discretization schemes for the 
advection problem can be tried....
 

CENTERED DIFFERENCE APPROCH FOR THE ADVECTION EQUATION

Centered difference discretization:

This yields the update formula:
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Such attempts tend to fail, often being spectacularly unstable
 

CENTERED DIFFERENCE ADVECTION OF A STEP FUNCTION

Initial conditions:

Evolved state:

(figure by Kees Dullemond)



Upwinding can render the simple advection algorithm stable
 

UPWIND DIFFERENCING APPROACH APPLIED TO THE ADVECTION EQUATION

Let's assume:

Now modify the finite difference 
approximation to be skewed to 
the upwind side:

This yields the update formula:
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However,
there is considerable 
“numerical diffusion”

Using upwind differencing, the simple update formula yields stable 
and robust results
 

UPWIND ADVECTION OF A STEP FUNCTION

(figure by Kees Dullemond)



Effectively, upwind differencing adds some diffusion to the central 
differencing scheme
 

ANALYSING UPWIND DIFFERENCING

● Once a bit of diffusion is added to the 
centered scheme, it becomes stable!

● The diffusion vanishes in the limit of Δx→0.
It is purely numerical diffusion.

upwind
difference

centered 
difference

diffusion term with
diffusion constant



State vector

Euler equations

Flux vector

Finite volume discretization:

Cell averages

But how to compute the fluxes through cell surfaces?

The Euler equations as a set of hyperbolic conservation laws
 

FLUX FORMULATION OF THE EULER EQUATIONS

Evolution equation 



The timesteps in many finite volume scheme can be viewed as a 
sequence of Reconstruct-Evolve-Average (REA) steps
 

REA SCHEMES

Reconstruct: Using the cell-
averaged quantities, determine 
the run of these quantities 
everywhere in the cell.

Evolve: The reconstructed state is then evolved forward in time by Δt. In 
Godunov's approach, this is done by treating each cell interface as a piece-
wise constant initial value problem which is solved with a Riemann solver.

Average: The evolved solution of the previous step is averaged at time Δt to 
compute new average states U n+1 in each cell in a conservative fashion. 
Then the cycle repeats.



The Riemann problem as basis for Godunov schemes
 

CALCULATION OF THE GODUNOV FLUX

ρL, PL, vL ρR, PR, vR

Assume piece-wise constant left and 
right states for the fluid

Calculate the self-similar time 
evolution (Riemann problem)

Sample the solution along x/ t=0, 
which yields the Godunov flux 

x

t

shock wave

contact 
discontinuity rarefaction 

wave

unperturbed right 
state

unperturbed left 
state

ρF, PF, vF

sampling



Fortunately, the averaging step doesn't have to be done explicitly
 

OBTAINING THE AVERAGED STATE

Let's integrate the Euler equation
over a cell and in time:

This yields:

But the Riemann solution is self-similar, with the Godunov flux being independent of time:

Hence the new spatially average state is simply given by:



Two issues are left open:

● How can this be extended to 
multiple dimensions?

● How can we reach an accuracy higher 
than 1st order in space and time?



Operator splitting can be used to extend the scheme to multiple 
dimensions
 

FROM 1D TO 3D WITH LITTLE EFFORT

This can be written also in the following form:

Let's write out the full Euler for Cartesian coordinates:

Now let's split up the equation into three separate equations:

generates evolution under F

Approximate solution can be obtained as:



The sequence of dimensionally split sweeps must be alternated to 
reach higher-order accuracy in time
 

TIME-ADVANCE IN DIMENSIONALLY SPLIT SCHEMES

Simple operator split in two dimensions:

For second-order accuracy in time, symmetrize the action of the operators:

One may also, e.g., use:

This readily generalizes to three dimensions:



One can also calculate the fluxes directly in multi-D 
and arrive at an unsplit scheme
 

UNSPLIT FINITE-VOLUME UPDATES
Unstructured mesh case



To achieve second-order accuracy, one can use a
piece-wise linear reconstruction
 

LINEAR RECONSTRUCTION AND GRADIENT LIMITATION

r

Slope limiting procedure: 

x

r
conservative linear 
reconstruction

x

Example slope limiter:

● Needed to prevent creation of new 
extrema, preventing spurious oscillations

● Reduces the order of the scheme at 
discontinuities



The gradients can be used to predict the fluid state directly at 
the interfaces
 

LINEAR EXTRAPOLATION TO CELL BOUNDARIES

But how do we 
get the time 
derivative?

Spatial extrapolation:

Temporal extrapolation to mid-step:

This combined extrapolation needs to be done for 
the full fluid state for second-order accuracy:



The MUSCL-Hancock scheme is a particularly simple
second-order extension of Godunov's method
 

GETTING THE TIME EXTRAPOLATION FROM THE SPATIAL GRADIENTS

● At discontinuities, the slope limiter will suppress the derivative, making the scheme 
automatically first order

● We recall also Godunov's theorem, according to which any linear algorithm that 
does not produce new extrema (aka TVD) can be at most first order.

Euler equation:

This means we can estimate the time 
derivate based on the current state of a 
cell and the spatial gradient estimates:

MUSCL-Hancock prediction:

gradient estimate



Thermal energy, temperature and entropy are treated in a 
fundamentally different way in Eulerian codes compared to SPH
 

QUESTIONS ABOUT ENTROPY AND FRIENDS IN EULERIAN CODES

Why is there no artificial viscosity needed in the MUSCL scheme?

How is entropy produced? 

● Temperature is defined as difference between total 
energy and kinetic energy (note: cold flow problem)

● Entropy is not followed explicitly – one simply 
assigns the entropy according to what the 
conservation laws dictate

● The break-down of the differential form of the 
equations at shocks is circumvented by using the 
integrated flux-form of the equations 

Some notes may help to clarify this:



Approximate Riemann solvers are often used for 
computational efficiency
 

EXAMPLE: ROE SOLVER FOR ISOTHERMAL GAS IN TWO DIMENSIONS

2d state vector for 
isothermal gas:

The x-sweep part of 
the equations is:

We want to solve for the x-sweep:

To derive an approximate Riemann solver, we want to linearize the equation:

Roe's suggestion:

The Jacobian is approximated as 
being constant and only a 
function of left and right states.



Eigenstructure of the linearized isothermal equations: 

Roe's flux: 

Eigenvalues:

Eigenvectors:

Expand the jump in states in the eigenbasis:

Linearized solution is easily obtained.

Expand the jump in states in the eigenbasis:

x

tλ1 λ3
λ2
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