
High performance computing and numerical modeling
Volker Springel

Plan for my lectures

43rd Saas Fee Course
Villars-Sur-Ollon, March 2013

Lecture 1: Collisional and collisionless N-body dynamics

Lecture 2: Gravitational force calculation

Lecture 3: Basic gas dynamics

Lecture 4: Smoothed particle hydrodynamics

Lecture 5: Eulerian hydrodynamics

Lecture 6: Moving-mesh techniques

Lecture 7: Towards high dynamic range

Lecture 8: Parallelization techniques and current computing trends

Dynamic range prohibitively large for ab-initio calculations

In addition: physics of star formation and AGN accretion only partially understood

Galaxy formation poses an enormous multi-scale physics problem

THE DYNAMIC RANGE CHALLENGE

A supermassive BH in a galaxy

~10-6 pc ~10 kpc dynamic range of 1010

Star formation in a normal galaxy

Mtot ~ 1012 M⊙

m* ~ 1 M⊙

mass dynamic range of 1012

x 20 x 21 x 22

x 23 x 24 x 25

x 26 x 27 x 28

x 20 x 21 x 22 x 23 x 24 x 25

x 26 x 27 x 28 x 29 x 210 x 211

x 212 x 213 x 214 x 215 x 216 x 217

x 218 x 219 x 220 x 221 x 222 x 223

x 224 x 225 x 226 x 227 x 228 x 229

x 230 x 231 x 232 x 233 x 235 x 236~7x1010

Achieving high local resolution usually implies high dynamic range in
space, time, and mass
THE DYNAMIC RANGE CHALLENGE OF GALAXY SIMULATIONS

● Assume we want to realize a 10 pc resolution using a uniform grid, for
example in a 10 Mpc volume.

● This would require 1018 cells – a billion times more than a 10003 run,
which is still a sizable simulation by today's standard.

● But actually, reducing the mesh size by a factor of 2 will also reduce the
timestep by a factor of 2.

● So if you improve the linear dimension (of all cells) by a factor of 10, the
computational cost goes up by a factor of 103 x 10 = 104.

● Going from a 10003 to a million3 cells in a uniform grid then means a
cost increase of 1012.

● If computers keep getting faster at the current rate (a factor of 100
in 10 years), we merely have to wait 60 years for this.

Fortunately, high resolution is only required in a small fraction of the
volume, making adaptive resolution techniques attractive
REALIZING HIGH SPATIAL DYNAMIC RANGE THROUGH ADAPTIVE RESOLUTION

Example: Suppose you want to have 10 pc resolution in the ISM of the
Galaxy, but the rest of the galaxy (radius 200 kpc) can be coarser resolved.

So adaptive spatial resolution is the way to go.

With a uniform mesh you need:

If you just fill the disk, say of radius 10 kpc and height 1 kpc,
with high resolution you need:

The Lagrangian character of SPH is automatically providing adaptive
resolution that is very well suited for gravity-driven structure growth
DIFFERENT APPROACHES TO ADAPTIVE RESOLUTION

SPH:

● Provided one puts enough particles initially into the region of
interest, an adaptive resolution with constant mass resolution
is automatically obtained.

● The downside is, resolution is difficult or impossible to
change on the fly.

● Multi-mass technique do not work very well as the accuracy
in regions where particles of different mass interact is poor.

collapse

Eulerian codes can employ Adaptive Mesh Refinement (AMR) to
realize high dynamic range
DIFFERENT APPROACHES TO ADAPTIVE RESOLUTION

patch-based
refinement strategy
(e.g ENZO)

tree-based
refinement strategy
(e.g RAMSES)

● Use a hierarchy of nested
grids that allows in principle
arbitrary dynamic range.
Refinement criteria can be
chosen almost arbitrarily.

● Quick motion of a small
high-resolution region
requires however frequent
changes of the mesh
hierarchy.

● Accuracy at grid boundaries
suffers and normally goes
down to 1st order.

Eulerian codes can employ Adaptive Mesh Refinement (AMR) to
realize high dynamic range
DIFFERENT APPROACHES TO ADAPTIVE RESOLUTION

AMR:

● Similar to SPH, the method keeps the mass resolution
approximately constant, independent of the clustering state.

● If desired, dynamic mesh refinements and de-refinements
are however possible, similar to AMR.

● At any given time, only one mesh is tessellating the volume.
The resolution changes gradually throughout space, in
principal avoiding localized errors due to resolution changes.

The moving-mesh approach is intermediate between SPH and AMR
DIFFERENT APPROACHES TO ADAPTIVE RESOLUTION

Moving
Voronoi
mesh:

Adding a
point splits
cell into two

Removing a
point coarsens
the local mesh

Small spatial scales also imply short timesteps
INDIVIDUAL TIMESTEP INTEGRATION IS OFTEN IMPLEMENTED HIERARCHICALLY

Greg Bryan

Timestep /
Refinement Level

~10

~102

~103

~104

~105

~106

To simulate a certain timespan, you either need to advance
every cell at every step (as in FLASH), or you advance
only the finer meshes on shorter steps.

Particles/Cells
on the timestep bin

2 x Δt

 Δt

4 x Δt

8 x Δt

16 x Δt

32 x Δt

The individual stepping can be a factor 28.4 faster in this example.

29 3 8 3 15 3 8 3 22 3 8 3 15 3 8 3 29 3 8 3 15 3 8 3 22 3 8

SystemstepOrdinary power-2
stepping in GADGET

Systemstep

29 3 8 3 15 3 8 3 22 3 8 3 15 3 8 3 29 3 8 3 15 3 8 3 22 3 8

Ordinary power-2
stepping in GADGET

Systemstep

29 3 8 3 15 3 8 3 22 3 8 3 15 3 8 3 29 3 8 3 15 3 8 3 22 3 8

Ordinary power-2
stepping in GADGET

Systemstep

29 3 8 3 15 3 8 3 22 3 8 3 15 3 8 3 29 3 8 3 15 3 8 3 22 3 8

Ordinary power-2
stepping in GADGET

Use of "Divide and Conquer" for complicated PDE systems
OPERATOR SPLITTING TECHNIQUES

Right hand-side may describe
physics such as radiative cooling,
diffusion or chemistry.

Consider the general differential equation:

Suppose we can formulate solutions for A and B separately:

Then the Lie-split approximate solution for the full system is:

The Strang-split approximate solution for the full system is given by:

How accurate are the operator-split timesteps?

Taylor expand:

This gives for Lie:

With the help of the Baker-Campell-Hausdorff formula one finds for Strang:

This means we can split off the extra physics:

Parallel computing:
Scalability and its

limitations

Amdahl's law provides a fundamental limit for the speed-up that can be
achieved in a parallel code
THE IMPLICATIONS OF A RESIDUAL SERIAL FRACTION

Speed up for serial fraction F on N processors:

Example: If F = 5%, then the speed up is
at most 20, no matter how many
processors are used!

“The first 90% of the code accounts
for the first 90% of the development
time. The remaining 10% of the code
account for the other 90% of the
development time.”

- Tom Cargill, Bell Labs

Issues of floating point
accuracy

Parallelization may change the results of simulations

INTRICACIES OF FLOATING POINT ARITHMETIC

On a computer, real numbers are approximated by floating point numbers

a 32 bit float

Mathematical operations regularly lead out of the space of the
representable numbers. This results in round-off errors.

One result of this is that the law of associativity for simple additions doesn't
hold on a computer.

A + (B + C) ≠ (A + B) + C

In the parallelization scheme of GADGET-2, tree walks may be split
up into parts that are carried out by different processors

HIERARCHICAL TREE ALGORITHMS

As a result of parallelization, the calculation of the force may be split to up
onto different processors

THE FORCE SUM IN THE PARALLELIZED TREE ALGORITHM

The tree-walk results in typically several hundred multipole forces

cpu 0 cpu 1 cpu 2

A B C

Situation 1:

Multipole force

cpu 0 cpu 1

A' B'

Situation 2:

A + B + C ≠ A' + B'

When the domain decomposition is changed, round-off differences are introduced
into the results

Consequences of round-off errors in collisionless systems

THE LIMITED RELEVANCE OF INDIVIDUAL PARTICLE ORBITS

As the systems are typically chaotic, small perturbations are quickly amplified.

Since in tree codes the force errors discontinuously depend on the particle
coordinates, small differences from round-off can be boosted in one step from
machine epsilon to the order of the typical average force error.

Changes in the number of processors modifies round-off errors in the forces of
particles. Hence the final result of runs carried out on different numbers of
processors may not be binary identical.

Changing the compiler or its optimizer settings will also introduce differences in
collisionless simulations.

Convergence in collisionless simulations can not be achieved on a
particle-by-particle basis.

However, the collective statistical properties of the systems do converge.

Individual particles are noisy tracers of the dynamics!

In a parallel code, numerous sources of performance losses can limit
scalability to large processor numbers
TROUBLING ASPECTS OF PARALLELIZATION

Incomplete parallelization
The residual serial part in an application limits the theoretical speed-up one can
achieve with an arbritrarily large number of CPUs ('Ahmdahl's Law'), e.g. 5%
serial code left, then parallel speed-up is at most a factor 20.

Strong scaling: Keep problem size fixed, but increase number of CPUs
Weak scaling: When number of CPUs is increased, also increase the problem size

 As a rule, scalability can be more easily retained in the weak scaling regime.

In practice, it usually doesn't make sense to use a large number of
processors for a (too) small problem size !

Parallelization overhead
The bookkeeping code necessary for non-trivial communication algorithms
increases the total cost compared to a serial algorithm. Sometimes this extra
cost increases with the number of processors used.

Communication times
The time spent in waiting for messages to be transmitted across the network
(bandwith) and the time required for starting a communication request (latency).

Wait times
Work-load imbalances will force the fastest CPU to idly wait for the slowest one.

For fixed timesteps and large cosmological boxes, the scalability of
the GADGET-2 code is not too bad
RESULTS FOR A "STRONG SCALING" TEST (FIXED PROBLEM SIZE)

2563 particles in a 50 h-1 Mpc box

For small problem sizes or
isolated galaxies, the
scalability is limited
RESULTS FOR "STRONG SCALING"
OF A GALAXY COLLISION
SIMULATION

CPU consumption in different code parts
as a function of processor number

Ncpu

The cumulative execution time of the tree-walk on each processor
can be measured and used to adjust the domain decomposition
BALANCING THE TOTAL WORK FOR EACH PROCESSOR

Tree walk for local particles Tree walk for imported particles

elapsed time do to the assigned work in each step



The total CPU-time for the tree-walks per step can be made

roughly equal for each MPI task

cpu 0

cpu 1

cpu 2

cpu 3

cpu 4

cpu 5

cpu 6

cpu 7

wait times
(losses)

T̀work = ∑Ttreewalk

The communication between the two phases of a step introduces a
synchronization point in GADGET2's standard communication scheme
LOSSES DUE TO IMBALANCE IN DIFFERENT COMMUNICATION PHASES

cpu 0

cpu 1

cpu 2

cpu 3

cpu 4

cpu 5

cpu 6

cpu 7

wait times
(losses)

The situation after work-load balancing:

This is what actually happens once the communication step is accounted for:

communication phase

The communication itself consumes some time and also induces
additional wait times
LOSSES DUE TO COMMUNICATION TIMES IN ONE GRAVITY STEP

wait times
(losses)

communication
times

communication
times

one timestep

This is the real situation in GADGET-2....

On many systems, asynchronous communication still requires a
concurrent MPI call of the other process to ensure progress
TIME-LINE OF EVENTS IN AN ASYNCHRONOUS SEND

message put
into send buffer

receive request
posted, data
picked up

Time

CPU A

CPU B

Ideal asynchronous case

message put
into send buffer

receive request
posted

Time

CPU A

CPU B

Synchronous case

Computations

What really happens on many systems
message put
into send buffer

receive request
posted

Time

CPU A

CPU B

Wait

Reducing
imbalance with a

better domain
decomposition

In the new code, exported particles know where to continue the tree
walk on the foreign processor

COMMUNICATION IN THE DISTRIBUTED TREE ALGORITHM need to export
to processor 3

Gadget2 starts to walk
the tree for imported
particles always at the
root node

Gadget3 continues the
tree walk at the right
place for imported
particles

Evaluating opening criteria for top-
level tree nodes multiple times can
be eliminated. The work for tree
walks (gravity and SPH neighbor
search) becomes strictly
independent of the number of
processors.

The inhomogeneous
particle distribution
and the different
timesteps as a
function of density
make it challenging
to find an optimum
domain
decomposition that
balances work-load
(and ideally memory-
load)

PARTICLE
DISTRIBUTION IN AN
EXPONENTIAL DISK

GADGET-1
used a simple
orthogonal
recursive
bisection
EXAMPLE OF
DOMAIN
DECOMPOSITION IN
GADGET-1

GADGET-2
uses a more
flexible space-
filling Peano-
Hilbert curve
EXAMPLE OF
DOMAIN
DECOMPOSITION IN
GADGET-2

GADGET-3
uses a space-
filling Peano-
Hilbert curve
which is more
flexible
EXAMPLE OF
DOMAIN
DECOMPOSITION IN
GADGET-3

The new domain decomposition scheme can balance the work-load and
the memory-load at the same time but requires more communication
THE SIMPLE IDEA BEHIND MULTI-DOMAINS

The domain decomposition partitions the space-filling curve through
the volume

cpu 1 cpu 2cpu 0 cpu 3

GADGET-2

GADGET-3

But: Need a more efficicient domain
decomposition code

Need a tree-walk scheme that doesn't slow
down if there are more domains

Need a new communication strategy for the
PM part of the code

The new code scales substantially better for high-res zoom simulations of
isolated halos
A STRONG SCALING TEST ON BLUEGENE OF A SMALL HIGH-RES HALO

“Gadget 3”

Gadget 2

Scaling of the AREPO code on Ranger

WEAK SCALING OF ALL CODE COMPONENTS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

