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Dynamic range prohibitively large for ab-initio calculations

In addition: physics of star formation and AGN accretion only partially understood

Galaxy formation poses an enormous multi-scale physics problem
 

THE DYNAMIC RANGE CHALLENGE

A supermassive BH in a galaxy

~10-6 pc ~10 kpc dynamic range of 1010

Star formation in a normal galaxy

Mtot ~ 1012 M⊙

m* ~ 1 M⊙

mass dynamic range of 1012
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Achieving high local resolution usually implies high dynamic range in 
space, time, and mass
THE DYNAMIC RANGE CHALLENGE OF GALAXY SIMULATIONS

● Assume we want to realize a 10 pc resolution using a uniform grid, for 
example in a 10 Mpc volume.

● This would require 1018 cells – a billion times more than a 10003 run, 
which is still a sizable simulation by today's standard.

● But actually, reducing the mesh size by a factor of 2 will also reduce the 
timestep by a factor of 2.

● So if you improve the linear dimension (of all cells) by a factor of 10, the 
computational cost goes up by a factor of 103 x 10 = 104.

● Going from a 10003 to a million3 cells in a uniform grid then means a 
cost increase of 1012.

● If computers keep getting faster at the current rate (a factor of 100
in 10 years), we merely have to wait 60 years for this.  



Fortunately, high resolution is only required in a small fraction of the 
volume, making adaptive resolution techniques attractive
REALIZING HIGH SPATIAL DYNAMIC RANGE THROUGH ADAPTIVE RESOLUTION

Example: Suppose you want to have 10 pc resolution in the ISM of the 
Galaxy, but the rest of the galaxy (radius 200 kpc) can be coarser resolved.

So adaptive spatial resolution is the way to go.

With a uniform mesh you need: 

If you just fill the disk, say of radius 10 kpc and height 1 kpc, 
with high resolution you need: 



The Lagrangian character of SPH is automatically providing adaptive 
resolution that is very well suited for gravity-driven structure growth
DIFFERENT APPROACHES TO ADAPTIVE RESOLUTION

SPH:

● Provided one puts enough particles initially into the region of 
interest, an adaptive resolution with constant mass resolution 
is automatically obtained.

● The downside is, resolution is difficult or impossible to 
change on the fly.

● Multi-mass technique do not work very well as the accuracy 
in regions where particles of different mass interact is poor.

collapse



Eulerian codes can employ Adaptive Mesh Refinement (AMR) to 
realize high dynamic range
DIFFERENT APPROACHES TO ADAPTIVE RESOLUTION

patch-based 
refinement strategy
(e.g ENZO)

tree-based 
refinement strategy
(e.g RAMSES)



● Use a hierarchy of nested 
grids that allows in principle 
arbitrary dynamic range. 
Refinement criteria can be 
chosen almost arbitrarily.

● Quick motion of a small 
high-resolution region 
requires however frequent 
changes of the mesh 
hierarchy.

● Accuracy at grid boundaries 
suffers and normally goes 
down to 1st order.

Eulerian codes can employ Adaptive Mesh Refinement (AMR) to 
realize high dynamic range
DIFFERENT APPROACHES TO ADAPTIVE RESOLUTION

AMR:



● Similar to SPH, the method keeps the mass resolution 
approximately constant, independent of the clustering state.

● If desired, dynamic mesh refinements and de-refinements 
are however possible, similar to AMR. 

● At any given time, only one mesh is tessellating the volume. 
The resolution changes gradually throughout space, in 
principal avoiding localized errors due to resolution changes.

The moving-mesh approach is intermediate between SPH and AMR
DIFFERENT APPROACHES TO ADAPTIVE RESOLUTION

Moving 
Voronoi 
mesh:

Adding a 
point splits 
cell into two

Removing a 
point coarsens 
the local mesh



Small spatial scales also imply short timesteps
INDIVIDUAL TIMESTEP INTEGRATION IS OFTEN IMPLEMENTED HIERARCHICALLY

Greg Bryan

Timestep / 
Refinement Level

~10

~102

~103

~104

~105

~106

To simulate a certain timespan, you either need to advance 
every cell at every step (as in FLASH), or you advance 
only the finer meshes on shorter steps.

Particles/Cells
on the timestep bin

2 x Δt

 Δt

4 x Δt

8 x Δt

16 x Δt

32 x Δt

The individual stepping can be a factor 28.4 faster in this example.
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Use of "Divide and Conquer" for complicated PDE systems
OPERATOR SPLITTING TECHNIQUES

Right hand-side may describe 
physics such as radiative cooling, 
diffusion or chemistry.

Consider the general differential equation:

Suppose we can formulate solutions for A and B separately:

Then the Lie-split approximate solution for the full system is:

The Strang-split approximate solution for the full system is given by:



How accurate are the operator-split timesteps?

Taylor expand:

This gives for Lie:

With the help of the Baker-Campell-Hausdorff formula one finds for Strang:

This means we can split off the extra physics:



Parallel computing: 
Scalability and its 

limitations



Amdahl's law provides a fundamental limit for the speed-up that can be 
achieved in a parallel code
THE IMPLICATIONS OF A RESIDUAL SERIAL FRACTION

Speed up for serial fraction F on N processors:

Example: If F = 5%, then the speed up is 
at most 20, no matter how many 
processors are used!

“The first 90% of the code accounts 
for the first 90% of the development 
time. The remaining 10% of the code 
account for the other 90% of the 
development time.”

- Tom Cargill, Bell Labs



Issues of floating point 
accuracy



Parallelization may change the results of simulations
 

INTRICACIES OF FLOATING POINT ARITHMETIC

On a computer, real numbers are approximated by floating point numbers 

a 32 bit float

Mathematical operations regularly lead out of the space of the 
representable numbers.  This results in round-off errors.

One result of this is that the law of associativity for simple additions doesn't 
hold on a computer.

A + (B + C)  ≠   (A + B) + C



In the parallelization scheme of GADGET-2, tree walks may be split 
up into parts that are carried out by different processors
 

HIERARCHICAL TREE ALGORITHMS



As a result of parallelization, the calculation of the force may be split to up 
onto different processors
 

THE FORCE SUM IN THE PARALLELIZED TREE ALGORITHM

The tree-walk results in typically several hundred multipole forces

cpu 0 cpu 1 cpu 2

A B C

Situation 1:

Multipole force

cpu 0 cpu 1

A' B'

Situation 2:

A + B + C    ≠    A' + B'

When the domain decomposition is changed, round-off differences are introduced 
into the results



Consequences of round-off errors in collisionless systems
 

THE LIMITED RELEVANCE OF INDIVIDUAL PARTICLE ORBITS

As the systems are typically chaotic, small perturbations are quickly amplified.

Since in tree codes the force errors discontinuously depend on the particle 
coordinates, small differences from round-off can be boosted in one step from 
machine epsilon to the order of the typical average force error.

Changes in the number of processors modifies round-off errors in the forces of 
particles. Hence the final result of runs carried out on different numbers of 
processors may not be binary identical.

Changing the compiler or its optimizer settings will also introduce differences in 
collisionless simulations.

Convergence in collisionless simulations can not be achieved on a 
particle-by-particle basis. 

However, the collective statistical properties of the systems do converge. 

Individual particles are noisy tracers of the dynamics!



In a parallel code, numerous sources of performance losses can limit 
scalability to large processor numbers
TROUBLING ASPECTS OF PARALLELIZATION

Incomplete parallelization
The residual serial part in an application limits the theoretical speed-up one can 
achieve with an arbritrarily large number of CPUs ('Ahmdahl's Law'), e.g. 5% 
serial code left, then parallel speed-up is at most a factor 20.

Strong scaling:  Keep problem size fixed, but increase number of CPUs
Weak scaling:    When number of CPUs is increased, also increase the problem size

           As a rule, scalability can be more easily retained in the weak scaling regime.

In practice, it usually doesn't make sense to use a large number of 
processors for a (too) small problem size !

Parallelization overhead
The bookkeeping code necessary for non-trivial communication algorithms 
increases the total cost compared to a serial algorithm. Sometimes this extra 
cost increases with the number of processors used. 

Communication times
The time spent in waiting for messages to be transmitted across the network 
(bandwith) and the time required for starting a communication request (latency).

Wait times
Work-load imbalances will force the fastest CPU to idly wait for the slowest one. 



For fixed timesteps and large cosmological boxes, the scalability of 
the GADGET-2 code is not too bad
RESULTS FOR A "STRONG SCALING"  TEST (FIXED PROBLEM SIZE)

2563 particles in a 50 h-1 Mpc box



For small problem sizes or 
isolated galaxies, the 
scalability is limited
RESULTS FOR "STRONG SCALING" 
OF A GALAXY COLLISION 
SIMULATION

CPU consumption in different code parts 
as a function of processor number

Ncpu



The cumulative execution time of the tree-walk on each processor 
can be measured and used to adjust the domain decomposition
BALANCING THE TOTAL WORK FOR EACH PROCESSOR 

Tree walk for local particles Tree walk for imported particles

elapsed time do to the assigned work in each step



The total CPU-time for the tree-walks per step can be made 

roughly equal for each MPI task 

cpu 0

cpu 1

cpu 2

cpu 3

cpu 4

cpu 5

cpu 6

cpu 7

wait times 
(losses)

T̀work = ∑Ttreewalk



The communication between the two phases of a step introduces a 
synchronization point in GADGET2's standard communication scheme
LOSSES DUE TO IMBALANCE IN DIFFERENT COMMUNICATION PHASES

cpu 0

cpu 1

cpu 2

cpu 3

cpu 4

cpu 5

cpu 6

cpu 7

wait times 
(losses)

The situation after work-load balancing:

This is what actually happens once the communication step is accounted for:

communication phase



The communication itself consumes some time and also induces 
additional  wait times
LOSSES DUE TO COMMUNICATION TIMES IN ONE GRAVITY STEP

wait times 
(losses)

communication 
times

communication 
times

one timestep

This is the real situation in GADGET-2....



On many systems, asynchronous communication still requires a 
concurrent MPI call of the other process to ensure progress
TIME-LINE OF EVENTS IN AN ASYNCHRONOUS SEND

message put 
into send buffer

receive request 
posted, data 
picked up

Time

CPU A

CPU B

Ideal asynchronous case

message put 
into send buffer

receive request 
posted

Time

CPU A

CPU B

Synchronous case

Computations

What really happens on many systems
message put 
into send buffer

receive request 
posted

Time

CPU A

CPU B

Wait



Reducing 
imbalance with a 

better domain 
decomposition



In the new code, exported particles know where to continue the tree 
walk on the foreign processor
 

COMMUNICATION IN THE DISTRIBUTED TREE ALGORITHM need to export
to processor 3

Gadget2 starts to walk 
the tree for imported 
particles always at the 
root node

Gadget3 continues the 
tree walk at the right 
place for imported 
particles

Evaluating opening criteria for top-
level tree nodes multiple times can 
be eliminated. The work for tree 
walks (gravity and SPH neighbor 
search) becomes strictly 
independent of the number of 
processors.



The inhomogeneous 
particle distribution 
and the different 
timesteps as a 
function of density 
make it challenging 
to find an optimum 
domain 
decomposition that 
balances work-load 
(and ideally memory-
load)

PARTICLE 
DISTRIBUTION IN AN 
EXPONENTIAL DISK



GADGET-1 
used a simple 
orthogonal 
recursive 
bisection
EXAMPLE OF 
DOMAIN 
DECOMPOSITION IN 
GADGET-1



GADGET-2 
uses a more 
flexible space-
filling Peano-
Hilbert curve 
EXAMPLE OF 
DOMAIN 
DECOMPOSITION IN 
GADGET-2



GADGET-3 
uses a space-
filling Peano-
Hilbert curve 
which is more 
flexible
EXAMPLE OF 
DOMAIN 
DECOMPOSITION IN 
GADGET-3



The new domain decomposition scheme can balance the work-load and 
the memory-load at the same time but requires more communication
THE SIMPLE IDEA BEHIND MULTI-DOMAINS

The domain decomposition partitions the space-filling curve through 
the volume

cpu 1 cpu 2cpu 0 cpu 3

GADGET-2

GADGET-3

But: Need a more efficicient domain 
decomposition code

Need a tree-walk scheme that doesn't slow 
down if there are more domains

Need a new communication strategy for the 
PM part of the code



The new code scales substantially better for high-res zoom simulations of 
isolated halos
A STRONG SCALING TEST ON BLUEGENE OF A SMALL HIGH-RES HALO

“Gadget 3”

Gadget 2



Scaling of the AREPO code on Ranger
 

WEAK SCALING OF ALL CODE COMPONENTS
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