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Cosmological N-body Simulations

I N-body simulations are simulations of the motion of particles
under the influence of physical forces.

I Focus on collisionless dark matter particles:
I hypothetical type of matter
I the only significant interaction between the particles is via

gravity
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Cosmological N-body Simulations

I After some time, the particles will clump together. Such
gravitationally bound objects are called halos.

I Halos themselves may contain self-bound objects, called
subhalos.

I The identification of halos and subhalos is an important tool
for problems concerning cosmic structure and its formation.

I Codes that perform this task are called halo-finders.
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Cosmological N-body Simulations

The results of a
cosmological
simulation of
1283 dark
matter particles
at redshift z = 0
with H0 = 70.4
and density
parameters
Ωm = 0.272 and
ΩΛ = 0.728.
The box length
corresponds to
88.8 Mpc.
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Unbinding Particles

I By convention, it is customary to treat all particles assigned
to a halo as bound to it, even though from a strict energetic
perspective they may not be.

I For subhalos, on the other hand, it is vital to identify and
remove unbound particles:

I Subhalos are located within a host halo and therefore expected
to be contaminated by the host’s particles

I Usually subhalos contain far less particles than their hosts, so
assigning particles to it without an unbinding procedure can
influence its physical properties significantly.

I “Removing a particle” means here to assign it to the parent
structure. This applies recursively to any level of substructure
within substructure.
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Goals of this thesis

I RAMSES (Teyssier, R. 2002) is a N-body and hydrodynamical
code that contains a clump finding algorithm, PHEW (Bleuler
et al. 2015).

I Both PHEW and RAMSES are fully parallel and make use of the
MPI library. PHEW works on-the-fly.

I The goal of this thesis is to implement a particle unbinding
algorithm to work with PHEW that is also fully parallel and
works on-the-fly.
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PHEW

I PHEW groups cells together by separating the mass density field
along minima, thus dividing the density field into patches.

I The algorithm can be divided in four main steps:
I segmentation
I connectivity establishment
I noise removal and
I substructure merging
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watershed segmentation

noise removal

substructure merging
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Image adapted from Bleuler et al. 2015.
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Test Cases

To demonstrate the effects of the particle unbinding, the following
datasets will be used:

I dice-twobody-dataset: A highly idealistic structures where
the effects can be seen and evaluated more easily, created
using DICE (Perret 2016).

I cosmo-dataset: A halo from the previously shown
cosmological simulation which is made up from 7030 particles.
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The initial particle distribution of the
dice-twobody dataset. A smaller halo
(subhalo 1) made of 40’000 particles is

nested within a bigger halo
(halo-namegiver), which contains

200’000 particles.

cosmo-dataset: A halo as identified by
PHEW of the previously shown

cosmological simulation at redshift
z = 0.
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Particle Unbinding

In an isolated system in the centre of mass frame, each particle i
can be assigned an energy Ei :

Ei = Ti + Vi = 1
2mi · v2

i + miφ(~ri )

A particle is considered bound if:

Ei < 0 ⇔ vi <
√
−2 · φ(~ri )
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Particle Unbinding
The only considered potential φ is the gravitational potential of
the particles themselves. The potential is determined by the
Poisson equation:

∆φ = 4πGρ

The spherically symmetric Poisson equation can be solved
analytically for φ:

φ(ri ) = −G
rmax∫
ri

M(< r̃)
r̃2 dr̃ − GMtot

rmax

Where M(< r) ≡
r∫
0
4πρ(r̃)r̃2dr̃ is the mass enclosed by a sphere of

radius r such that the clump’s total mass is enclosed by the radius
rmax : Mtot = M(< rmax ) and G is the gravitational constant and ρ
is the density.

12



Results: dice-twobody-dataset

PHEW only simple unbinding
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Results: dice-twobody-dataset: halo-namegiver
particles only

PHEW only simple unbinding
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Results: cosmo-dataset: halo-namegiver particles
only

PHEW only simple unbinding
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Results: cosmo-dataset: halo-namegiver particles
only

PHEW only simple unbinding
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Accounting for Neighbouring Structures
By construction, the identified subhalos are not isolated. This fact
changes the situation significantly for the interpretation of what
particles should be considered bound.
Consider first a particle α in the potential of an isolated clump:

α

E/mp

E/mp

spatial boundary for α
−φ

x

−φ, 1
2v

2

0

The spatial boundaries of its trajectory can be found by demanding
energy conservation E/mp = 1

2v
2 + φ = const. by following the

curve of constant total energy to the points where v2 = 0. 17



Accounting for Neighbouring Structures
Now apply the same thoughts to an isolated halo that is made up
from two clumps:

α

γ

β

spatial boundary for γ

spatial boundary for β−φB

−φA

−φtot = −(φA + φB)

x

−φ, 12v2

0

Clump B Clump A

I α is clearly not bound to the clump B.
I β will remain bound on an elliptic trajectory around the centre of

mass.
I γ is energetically bound to the clump just like β, but because of

clump A’s neighbouring potential, the particle can leave the
boundaries of clump B and wander off deep into clump A. 18



Accounting for Neighbouring Structures

⇒ Particles like γ shouldn’t be considered
bound.
The reason γ can wander off is because its
boundary extends past the interface that
connects the two clumps
⇒ the condition for a particle to be exclusively
bound must be that its trajectory must never
reach that interface.

CoM
S

A

B

⇒ Define S to be the point on the interface to the neighbouring
structure(s) that is closest to B’s centre of mass and φS to be the
potential of clump B at that point. Using the same argumentation
as before, a particle can’t reach S if

v <
√
−2(φ− φS)
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Results: dice-twobody-dataset

simple unbinding accounting for neighbours
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Results: dice-twobody-dataset: subhalo particles
only

simple unbinding accounting for neighbours
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Results: cosmo-dataset

simple unbinding accounting for neighbours
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Results: cosmo-dataset: subhalo particles only

simple unbinding accounting for neighbours
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Biased Clump Properties

initial set-up clumps found by PHEW

The identified clump properties will be biased:
I Missing particles: Subhalo is cut off
I Alien particles: Subhalo in contaminated by host’s particles
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Biased Clump Properties

It seems likely that the clump properties after particle unbinding
should be closer to the known ones, particularly so if only
exclusively bound particles are considered.

⇒ recompute the clump properties after unbinding and use this
updated information to go through the entire procedure again.
Reiterate until the bulk velocity of each clump converges:

bulk velocity converged⇔
∣∣∣∣∣vbulk,old − vbulk,new

vbulk,old

∣∣∣∣∣ < ε

where ε is a user-defined convergence limit.
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Results: Converging of the bulk velocity for the
dice-twobody-dataset

The deviation Dorig =
∣∣∣ vbulk−vorig

vorig

∣∣∣ from the originally set bulk
velocity to the computed bulk velocity for the subhalo of the
dice-twobody-dataset in dependence of the convergence limit ε:

ε niter Dorig
0.5 2 0.2326
0.1 4 0.0419

0.01 7 0.0024
0.001 8 0.0014
0.0001 10 0.0009

The bulk velocity computation needed niter iterations to
converge.
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Results: dice-twobody-dataset

accounting for neighbours iterative properties determination
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Results: dice-twobody-dataset: halo-namegiver
particles only

accounting for neighbours iterative properties determination
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Results: cosmo-dataset: halo-namegiver particles
only

accounting for neighbours iterative properties determination
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Results: cosmo-dataset: halo-namegiver particles
only

accounting for neighbours iterative properties determination
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