Meshless Methods in Astrophysics

Mladen Ivkovic
26. November 2019

LASTRO
École Polytechnique Fédérale de Lausanne

Meshless Methods: Partition of Unity

At any point x in space in the domain, we assign a volume partition $\psi_{i}(\mathrm{x})$ to each particle i such that

$$
\begin{equation*}
\sum_{i} \psi_{i}(\mathbf{x})=1 \tag{1}
\end{equation*}
$$

We choose

$$
\begin{align*}
\psi_{i}(\mathbf{x}) & =\frac{1}{\omega(\mathbf{x})} W\left(\mathbf{x}-\mathbf{x}_{i}, h(\mathbf{x})\right) \tag{2}\\
\omega(\mathbf{x}) & =\sum_{j} W\left(\mathbf{x}-\mathbf{x}_{j}, h(\mathbf{x})\right) \tag{3}
\end{align*}
$$

$W(\mathbf{x})$ can be any arbitrary function at this point. In practice: use spherically symmetric kernel functions with compact support.

Meshless Methods: Partition of Unity

In general, no point in space is assigned to only one particle.

Meshless Methods: Partition of Unity

Even for spherically symmetric kernels W, the volume partitions $\psi_{i}(x)$ in general will not be symmetric due to $\omega(\mathbf{x})$

The partition of unity $\psi\left(\mathbf{x}_{i}-\mathbf{x}, h\left(\mathbf{x}_{i}\right)\right)$ for the black particle i at the position \mathbf{x}_{i} with smoothing length $h\left(\mathbf{x}_{i}\right)$ using a cubic spline kernel. The white points are neighbouring particles withing the compact support radius of particle i.

Meshless Methods: Hydrodynamics Equations

To obtain a discrete hydro scheme, we start with the Euler equations in conservative form:

$$
\begin{equation*}
\frac{\partial \mathbf{U}_{k}}{\partial t}+(\nabla \cdot \mathbf{F})_{k}=0 \tag{4}
\end{equation*}
$$

for every component k of the state vector \mathbf{U} and the flux tensor \mathbf{F} :

$$
\mathbf{U}=\left(\begin{array}{c}
\rho \tag{5}\\
\rho \mathbf{v} \\
E
\end{array}\right) \quad \mathbf{F}=\left(\begin{array}{c}
\rho \mathbf{v} \\
\rho v_{i} v_{j}+P \mathcal{I} \\
(E+P) \mathbf{v}
\end{array}\right)
$$

Meshless Methods: Hydrodynamics Equations

We arrive at the expression

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(V_{i} \mathbf{U}_{k, i}\right)+\sum_{j} \mathbf{F}_{k, i j} \cdot \mathbf{A}_{i j}=0 \tag{6}
\end{equation*}
$$

with associated particle volumes

$$
\begin{equation*}
V_{i}=\int_{V} \psi_{i}(\mathbf{x}) \mathrm{d} V=\frac{1}{\omega\left(\mathbf{x}_{i}\right)}+\mathcal{O}\left(h^{2}\right) \tag{7}
\end{equation*}
$$

and the flux $\mathbf{F}_{i j}$ between particle i and j.

Meshless Methods: Effective Surfaces

There are two expressions for the effective surfaces $\mathbf{A}_{i j}$ in literature:

- Following Ivanova et al. 2013:
$\mathbf{A}_{i j}$ is given by the integral:

$$
\begin{gather*}
\mathbf{A}_{i j}=\int_{V}\left[\psi_{i}(\mathbf{x}) \nabla \psi_{j}(\mathbf{x})-\psi_{j}(\mathbf{x}) \nabla \psi_{i}(\mathbf{x})\right] \mathrm{d} V \tag{8}\\
\mathbf{A}_{i j}=V_{i} \nabla \psi_{j}\left(\mathbf{x}_{i}\right)-V_{j} \nabla \psi_{i}\left(\mathbf{x}_{j}\right)+\mathcal{O}\left(h^{2}\right) \tag{9}
\end{gather*}
$$

- Following Hopkins 2015:

$$
\begin{equation*}
\mathbf{A}_{i j}^{\alpha}=V_{i} \tilde{\psi}_{j}^{\alpha}\left(\mathbf{x}_{i}\right)-V_{j} \tilde{\psi}_{i}^{\alpha}\left(\mathbf{x}_{j}\right)+\mathcal{O}\left(h^{2}\right) \tag{10}
\end{equation*}
$$

Meshless Methods: Effective Surfaces

The $\tilde{\psi}(\mathbf{x})$ come from the $\mathcal{O}\left(h^{2}\right)$ accurate discrete gradient expression from Lanson and Vila 2008:

$$
\begin{align*}
\left.\frac{\partial}{\partial x_{\alpha}} f(\mathbf{x})\right|_{\mathbf{x}_{i}} & =\sum_{j}\left(f\left(\mathbf{x}_{j}\right)-f\left(\mathbf{x}_{i}\right)\right) \tilde{\psi}_{j}^{\alpha}\left(\mathbf{x}_{i}\right) \tag{11}\\
\tilde{\psi}_{j}^{\alpha}\left(\mathbf{x}_{i}\right) & =\sum_{\beta=1}^{\beta=\nu} \mathbf{B}_{i}^{\alpha \beta}\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right)^{\beta} \psi_{j}\left(\mathbf{x}_{i}\right) \tag{12}\\
\mathbf{B}_{i} & =\mathbf{E}_{\mathbf{i}}^{-1} \tag{13}\\
\mathbf{E}_{i}^{\alpha \beta} & =\sum_{j}\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right)^{\alpha}\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right)^{\beta} \psi_{j}\left(\mathbf{x}_{i}\right) \tag{14}
\end{align*}
$$

Meshless Methods: Effective Surfaces

Ivanova version:

+ Analytical expression; Allows to demonstrate that conservation laws hold, easier interpretation
- No code is applying it

Hopkins version:

- Expression follows through use of discrete gradient
+ Is implemented in GIZMO
$\mathbf{A}_{i j}$ are rather abstract expressions. How can we interpret them,
how do they behave? Are there significant differences between the
Ivanova and Hopkins version?

Meshless Methods: Effective Surfaces

Ivanova version:

+ Analytical expression; Allows to demonstrate that conservation laws hold, easier interpretation
- No code is applying it

Hopkins version:

- Expression follows through use of discrete gradient
+ Is implemented in GIZMO
$\mathbf{A}_{i j}$ are rather abstract expressions. How can we interpret them,
how do they behave? Are there significant differences between the
Ivanova and Hopkins version?

Meshless Methods: Effective Surfaces

Ivanova version:

+ Analytical expression; Allows to demonstrate that conservation laws hold, easier interpretation
- No code is applying it

Hopkins version:

- Expression follows through use of discrete gradient
+ Is implemented in GIZMO
$\mathbf{A}_{i j}$ are rather abstract expressions. How can we interpret them, how do they behave? Are there significant differences between the Ivanova and Hopkins version?

Regular Grid Particle Configuration

- $\mathbf{A}_{i j}$ point towards neighbours
- $\left|\mathbf{A}_{i j}\right|$ ratio Hopkins/Ivanova vary between 1.06 and 0.33. Ratio tends to lower values with increasing particle distance.

Irregular Particle Configuration

- $\mathbf{A}_{i j}$ don't point towards neighbours!
- Ivanova: ψ is not spherically symmetric $\Rightarrow \nabla \psi$ won't be either
- Hopkins: Matrix multiplication in $\tilde{\psi}$.
- $\left|\mathbf{A}_{i j}\right|$ ratio Hopkins/Ivanova vary between 1.6 and 0.28 .

Checking Conservation Properties

For a finite volume method: expect $\sum_{j} \mathbf{A}_{i j}=0$

- regular particle grid: Satisfied to machine precision
- irregular particle grid: sum is around the same order of magnitude of a single $\mathbf{A}_{i j}$. Ivanova version is smaller than Hopkins
- $\sum_{j}\left|\mathrm{~A}_{i j}\right|$: Ivanova version is smaller than Hopkins

Checking Conservation Properties

For a finite volume method: expect $\sum_{j} \mathbf{A}_{i j}=0$

- regular particle grid: Satisfied to machine precision
- irregular particle grid: sum is around the same order of magnitude of a single $\mathbf{A}_{i j}$. Ivanova version is smaller than Hopkins
- $\sum_{j}\left|\mathbf{A}_{i j}\right|$: Ivanova version is smaller than Hopkins

Checking Conservation Properties

For a finite volume method: expect $\sum_{j} \mathbf{A}_{i j}=0$

- regular particle grid: Satisfied to machine precision
- irregular particle grid: sum is around the same order of magnitude of a single $\mathbf{A}_{i j}$. Ivanova version is smaller than Hopkins
- $\sum_{j}\left|\mathbf{A}_{i j}\right|$: Ivanova version is smaller than Hopkins

Dependence on distance

$\mathbf{A}_{i j}$ increase with distance, then drop again. Hopkins: higher peak values; Ivanova: higher relative contribution at distance

Dependence on Kernels

Effective Area $\mathbf{A}_{i j}$ of a particle w.r.t. the central particle (black) in a uniform distribution for different kernels

Summary of Findings

- clear differences in both magnitudes and directions of the $\mathbf{A}_{i j}$ obtained using the Ivanova and Hopkins formulation
$\sum_{j}\left|\mathbf{A}_{i j}\right|$ of the Ivanova $<$ Hopkins version
\Rightarrow smaller total fluxes possibly allow bigger time step sizes
- Ivanova method displays higher relative contribution with increasing distance
Ivanova $\mathbf{A}_{i j}$ are always well-defined, even in troublesome particle configurations

Summary of Findings

- clear differences in both magnitudes and directions of the $\mathbf{A}_{i j}$ obtained using the Ivanova and Hopkins formulation
- $\sum_{j}\left|\mathbf{A}_{i j}\right|$ of the Ivanova $<$ Hopkins version
\Rightarrow smaller total fluxes possibly allow bigger time step sizes
- Ivanova method displays higher relative contribution with increasing distance
- Ivanova $\mathbf{A}_{i j}$ are always well-defined, even in troublesome particle configurations

Summary of Findings

- clear differences in both magnitudes and directions of the $\mathbf{A}_{i j}$ obtained using the Ivanova and Hopkins formulation
- $\sum_{j}\left|\mathbf{A}_{i j}\right|$ of the Ivanova $<$ Hopkins version
\Rightarrow smaller total fluxes possibly allow bigger time step sizes
- Ivanova method displays higher relative contribution with increasing distance
- Ivanova $\mathbf{A}_{i j}$ are always well-defined, even in troublesome particle configurations

Summary of Findings

- clear differences in both magnitudes and directions of the $\mathbf{A}_{i j}$ obtained using the Ivanova and Hopkins formulation
- $\sum_{j}\left|\mathbf{A}_{i j}\right|$ of the Ivanova $<$ Hopkins version
\Rightarrow smaller total fluxes possibly allow bigger time step sizes
- Ivanova method displays higher relative contribution with increasing distance
- Ivanova $\mathbf{A}_{i j}$ are always well-defined, even in troublesome particle configurations

Prelimiary Results of Hydro Tests

Spherical Sod Shock

Sod shock with $\gamma=1.000$ in 2D at $t=0.10$
Left: $\quad\left(P_{L}, \rho_{L}, v_{L}\right)=(1.000,1.000,0.000)$
Right: $\left(P_{R}, \rho_{R}, v_{R}\right)=(0.100,0.141,0.000)$

GIZMO MFV (Hopkins 2015)
Cubic spline (M4)
15.14 neighbours ($\eta=1.235$)

Prelimiary Results of Hydro Tests

Sod Shock

Prelimiary Results of Hydro Tests

Sedov Blast

Sedov blast with $\gamma=1.667$ in 2D at $t=0.05$
Background $\rho_{0}=1.00$
Energy injected $E_{0}=1.00$

GIZMO MFV (Hopkins 2015)
Cubic spline (M4)
15.14 neighbours ($\eta=1.235$)

Prelimiary Results of Hydro Tests

Noh Implosion test

Prelimiary Results of Hydro Tests

Gresho-Chan Vortex

Prelimiary Results of Hydro Tests

Sedov Blast with fixed particles

Sedov blast with $\gamma=1.667$ in 2 D at $t=0.05$
Background $\rho_{0}=1.00$
Energy injected $E_{0}=1.00$

GIZMO MFV (Hopkins 2015)
Cubic spline (M4)
15.14 neighbours ($\eta=1.235$)

References

P. F. Hopkins, Monthly Notices of the Royal Astronomical Society 450, 53-110, ISSN: 0035-8711, 1365-2966 (June 2015).
N. Ivanova et al., The Astronomy and Astrophysics Review 21, ISSN: 0935-4956, 1432-0754, DOI: 10.1007/s00159-013-0059-2, arXiv: 1209.4302 (Nov. 2013).
N. Lanson, J.-P. Vila, SIAM J. Numer. Anal. 46, 1912-1934, ISSN: 0036-1429 (Apr. 2008).

