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Abstract
The implementation of an algorithm to identify dark matter halo merger trees into
the adaptive mesh refinement code RAMSES is presented. The algorithm is fully par-
allel using MPI and works on the fly. It tracks dark matter substructure individually
through particle IDs, thus allowing to follow the formation history of dark matter
clumps up to the point where they dissolve beyond the possibility of identification as
substructure. Once a clump merges into another, it is still being tracked by marking
the most strongly bound particle of that clump at the last snapshot where it was
identified. This allows to check at later snapshots whether the identified merging
event truly was one, or whether a misidentification by the density field gradient
based clump finding algorithm might have occured. The influence of various defini-
tions of substructure and the maximal number of particles tracked per clump have
been tested.
With the known formation history of dark matter structure, galaxies can be in-

troduced in a simulation containing only dark matter particles through use of a
parametrised stellar-mass-to-halo-mass (SMHM) relation. In this work, the SMHM
relation published by Behroozi, Wechsler, and Conroy 2013 was used. The obtained
stellar mass functions of central galaxies from z ∼ 0− 8 and correlation functions at
z ∼ 0 are compared to observational data. Taking into account that the simulations
used to obtain these mock galaxy catalogues didn’t have particularly high resolutions
with 5123 particles and that the main focus of this work is to demonstrate that a
merger tree algorithm and the generation of mock galaxy catalogues can be done on
the fly, the results show satisfactory agreement with observational data.

1. Motivation

Mock galaxy catalogues, artificial catalogues of galaxies created using numerical simulations,
have become indispensable tools for astronomy and cosmology. Usually simulations can give
real-space galaxy data, while observational data is measured in redshift-space. By following a
light cone through the past, redshift-space catalogues may be generated from simulated real-
space data, enabling direct comparisons to observations, possibly aiding in the interpretation
thereof. Observational effects and uncertainties can be included in results of simulations more
easily than taken out from observations, so by comparing the mocks with observed catalogues one
can test theories and assumptions and estimate systematic and statistical errors. Furthermore,
mock galaxy catalogues can be used to plan and forecast future surveys and to develop analysis
codes for anticipated observational data.

The current concordance model of cosmology, the ΛCDM model, states that the Universe is
made up from ∼ 5% baryonic matter, which is what galaxies are made of, ∼ 25% dark matter
and ∼ 70% dark energy. Dark matter has fundamentally different properties from baryonic
matter: It is collisionless, the only significant interaction it experiences is via gravity. This
property makes dark matter easier and cheaper to simulate than baryonic matter, where many
physical and hydrodynamical effects such as viscosity, radiation, pressure, heating, cooling and
many more need to be taken into account as well. For efficiency, cosmological simulations often
neglect baryonic effects in the Universe and replace the baryonic matter with dark matter in
order to preserve the total matter content. Such simulations are commonly referred to as ‘dark
matter only’ (DMO) simulations. With growing processing power, improved algorithms and the
use of parallel computing tools and architectures, larger and better resolved DMO simulations
are becoming possible. The current state-of-the-art cosmological simulation (Potter, Stadel, and
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Teyssier 2017) contained 2 trillion particles. However, in order to obtain mock galaxy catalogues,
galaxies somehow need to be re-introduced into DMO simulations. Various concepts to achieve
that goal have been developed and used, some of which will be introduced later. Most of them
however have in common that they place galaxies in condensates of dark matter, called ‘haloes’,
where the galaxy’s properties depend on the properties of its host halo’s properties and formation
history. In the hierarchical bottom-up structure formation picture, large haloes are thought
to form mainly through consecutive merging events of smaller haloes, which is schematically
shown in figure 5. The merger histories can be followed by means of a tree structure, which
are commonly referred to as ‘merger trees’. Merger trees are essential to obtain accurate mock
galaxy catalogues. Why that is the case will be further elaborated and illustrated at a later
point.

While bigger simulations can yield data of unprecedented size and resolution, they also produce
large amounts of data which needs to be stored and post-processed effectively. This creates
a variety of issues. On one hand there is a possibility that not all produced simulation data
can be stored because it is simply too large. Another issue is that most modern astrophysical
simulations are executed on large supercomputers which offer large distributed memory. Post-
processing the data they produce may also require just as much memory, so that the analysis will
also have to be executed on the distributed memory infrastructures. The reading and writing of a
vast amount of data to a permanent storage remains a considerable bottleneck, particularly so if
the data need to be read and written multiple times. One way to reduce the computational cost
is to include analysis tools like halo-finding and the generation of merger trees in the simulations
and run them “on the fly”, i.e. run them during the simulation.

In this work, a new implementation of a merger tree algorithm into the simulation code RAMSES
(Teyssier, R. 2002), designed to work on the fly and on parallel architectures, as well as mock
galaxy catalogues obtained using these merger trees on the fly, are presented and tested. This
work is structured as follows: Chapter 2 (partially adapted from Ivkovic 2017) gives a short
introduction amongst other topics to cosmological simulations of dark matter, halo finding,
merger trees, and obtaining galaxies from DMO simulations. The description of the merger tree
algorithm and the results of tests of the resulting from merger trees are in chapter 3. Mock
galaxy catalogues obtained through the presented merger tree algorithm are shown and tested
in chapter 4. Finally, this work is concluded in chapter 5.

2. Introduction

2.1. Simulating Dark Matter with RAMSES

A system that contains many particles is called an “N-body system”. A collisionless N-body
system is described by the following equations for the particles with positions xp and velocities
vp:

dxp
dt = vp

dvp
dt = −∇xφ (1)

with

∆xφ = 4πGρ (2)

Where φ is the potential, G the gravitational constant and ρ the mass density field. For a
collisionless system, the only interaction and therefore the only source of acceleration is gravity.
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RAMSES (Teyssier, R. 2002) is a N-body and hydrodynamical adaptive mesh refinement (AMR)
code which uses the “Fully Threaded Tree” data structure of Khokhlov (Khokhlov 1998). Aside
from many other uses, it can simulate the time evolution of particles by numerically integrating
equations (1). In the case of dark matter only (DMO) simulations, the matter content of the
Universe is taken to consist only of collisionless dark matter, thus neglecting any baryonic physics
like star or galaxy formation. The simulation usually consists of a (physically) large box, called
the domain, which is assumed to represent a typical chunk of the Universe. According to the
cosmological principle, the Universe is homogeneous and isotropic on large enough scales, so if
the physical domain is sufficiently large, one may pretend to simulate the entire Universe at once
by introducing periodical boundary conditions: If a particle would leave a boundary surface of
the domain, it is reintroduced into the system at the opposite surface. This way, one simulates
the entire Universe by assuming it consists of an infinite number of identical adjacent boxes.

Particles in the domain represent groups of dark matter particles and usually are all identical.
Since the density of the Universe is known, the mass of each particle is determined by the total
number of particles in the domain and the physical size of the domain.

The domain is covered by a Cartesian grid, called the mesh. Simulations require numerical
integration, whose accuracy increases as the size of a grid cell decreases, but smaller grid cells
naturally need more resources to cover a domain of the same size. AMR is a method that
“tries to attain a fixed accuracy for a minimum cost” (Berger and Colella 1989) by refining the
mesh only where and when necessary. “Refining” in this case means that cells of smaller and
smaller sizes are introduced until the desired accuracy is achieved. Grid cells that contain lots
of particles will be refined many times, while grid cells that contain no particles won’t be refined
at all.

To compute the spatial movement of the particles, first the density field ρ is computed using
a “Cloud-In-Cell” (CIC) interpolation scheme. The CIC scheme considers all particles to be
cubes (“clouds”) of one cell size and of uniform density. The mass of a particle is deposited in
cells based on what fraction of its “cloud” overlaps with the cell, thus determining the density
field. Once the density field is known, the Poisson equation (2) can be solved numerically and
the potential φ is computed. RAMSES utilises a Multigrid solver. Now the acceleration for each
cell can be obtained, from which the particle acceleration dvp

dt is computed using the inverse CIC
interpolation. The acceleration is then integrated over time to compute the particle velocity vp
and position xp using a second-order midpoint scheme.

2.2. Halo Finding

For simulations of collisionless dark matter in particular, an important tool for problems con-
cerning cosmic structure and its formation is the identification of haloes, i.e. gravitationally
bound objects made of particles as well as their internal structure and bound objects nested
within them, called subhaloes. Codes that perform this task are called “halo finders” or “clump
finders”.

Over the last decades, a multitude of halo finding tools has been introduced. The Halo-Finder
Comparison Project (Knebe et al. 2011) lists 29 different codes in the year 2010 and roughly
divides them into two distinct groups of codes:

1. Particle collector codes, where particles are linked together, usually by linking particles
that are closer to each other then some specified linking length, a method referred to as
“friends-of-friends” (Davis et al. 1985). This implicitly determines some minimal density
for the haloes found this way.
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2. Density peak locator codes, that first find density peaks and then collect particles around
those. One frequently used method to identify haloes in such manner is the “Spherical
Overdensity” method (Press and Schechter 1974). The basic idea is to find groups of
particles by growing spherical shells around density peaks until the mean overdensity of
the sphere falls below some threshold.

PHEW (Bleuler et al. 2015), the clump finder implemented in RAMSES, is also based on first
identifying density peaks in the density field ρ, but then assigns cells (not particles) to density
peaks following the steepest density gradient. This assignment gives rise to patches of cells
around density peaks, which will separate the mass density field along minima. Such a method
is frequently referred to as ‘watershed segmentation‘. Unlike the spherical overdensity method,
this allows to identify haloes without the assumption of spherical symmetry. The algorithm can
be divided in four main steps:

1. Segmentation
Cells containing a sufficiently high density are either marked as density peaks, if there are
no denser neighbouring cells around them, or assigned to the same peak their most dense
neighbour is also assigned to, thus dividing the density field into patches around density
peaks.

2. Connectivity Establishment
Every peak patch needs knowledge of all its neighbouring peak patches, i.e. patches that
share the surface along density minima with it. The maximal surface density between
two particular peak patches is considered as the “saddle” between these two. Naturally,
a peak patch can have multiple neighbouring peak patches. Out of all the saddles of all
the neighbouring peak patches, the one with the highest density is called the “key saddle”
and the neighbour it connects to is referred to as the “key neighbour”.

3. Noise Removal
Each peak patch is assigned a value representing the contrast to the background called
“relevance”, defined as the ratio of the peak’s density to its key saddle. A peak patch
is considered noise if its relevance is lower than a user-defined relevance threshold. An
irrelevant peak patch is then merged to its key neighbour. Expressed explicitly, merging
a peak patch i into a patch j means that all cells of i inherit the peak label of j.

4. Substructure Merging
Once the noise removal step is completed, the remaining structure consists only of peak
patches, essentially clumps of particles, which satisfy the relevance condition. These
clumps represent the structure on the lowest scale. A large halo for example, which can
very roughly be described as “a large clump” in a first approximation, would be decom-
posed into many small clumps. In order to identify such a halo as a single object, one
more step is necessary: The identified clumps at the lowest scale need to be merged further
into composite clumps. All peak patches whose key saddle density is higher than some
user-defined saddle threshold are merged into their key neighbour. The saddle threshold
defines which clumps should be considered as separate structures and which should be
merged and considered as composite structures. This merging is done iteratively and in
doing so the hierarchy of substructure is established.

2.3. Unbinding Particles

A further requirement for substructure finding is the removal of energetically unbound particles,
i.e. assigning a particle originally located within a substructure to the parent structure based
on an energy criterion. This applies recursively to any level of substructure within substructure.
Such a hierarchical clustering of matter is expected due to self gravity. It is customary to treat
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all particles assigned to a halo as bound to it, even though from a strict energetic perspective
they are not, thus particle unbinding may not be necessary for haloes, but it is vital for sub-
haloes. Subhaloes are by definition located within a host halo and are therefore expected to
be contaminated by the host’s particles. Considering that substructure often contains far fewer
particles than its host, blindly assigning particles to it without an unbinding procedure can
influence its physical properties significantly.

Various techniques to identify unbound particles within the found structures are used as well.
Because removing particles from a structure changes said structures properties, often iterative
approaches are used. AHF (Knollmann and Knebe 2009), ASOHF (Planelles, S. and Quilis, V.
2010) and SUBFIND (Springel et al. 2001) for example remove all unbound particles from a halo,
recompute the potential and repeat the procedure until no more particles are removed. Unbound
particles are then passed from subhaloes on to host haloes (or host subhaloes) for examination.
SKID (Stadel 2001) however only removes the particle with the highest energy per iteration.

By considering an isolated clump in a time-independent scenario, where energy is conserved, a
particle i is considered to be bound if its total energy Ei

Ei = 1
2mi · v2

i +miφ(ri) (3)

is negative:

Ei < 0 ⇔ particle is bound (4)

⇒ vi <
√
−2 · φ(ri) ⇔ particle is bound (5)

where ri is the particle’s position, vi = ||vi|| is the magnitude of the particle’s velocity, both given
in the centre of mass frame of the clump, and mi is the mass of every particle i. Approximating
the clump as a spherically symmetric object, the Poisson equation (eq. (2)) reduces from a three-
dimensional problem to a one-dimensional one, as the potential φ(r) will only depend on the
absolute distance from the origin, ri ≡ ||ri||, not any angular direction. For this case, the Poisson
equation for the gravitational potential φ can be solved analytically under the assumption that
φ(r →∞)→ 0:

φ(ri) = −G
rmax∫
ri

M(< r̃)
r̃2 dr̃ −GMtot

rmax
(6)

M(< r) ≡
r∫

0

4πρ(r̃)r̃2dr̃ (7)

Where M(< r) is the mass enclosed by a sphere of radius r such that the clump’s total mass is
enclosed by the radius rmax: Mtot = M(< rmax).

One problem with this condition is that it assumes that clumps will be isolated, which by
construction of the clump finder PHEW subhaloes will never be. The issues that arise from this
fact can be understood by considering the boundaries of a particle’s trajectory. These boundaries
in a given potential φ can be estimated using the conservation of energy:

E/mp = 1
2v

2 + φ = const. (8)

A gravitational potential is qualitatively shown in figure 1 as well as a particle α with 1
2v

2 < −φ.
The total energy per particle mass E/mp of the particle on the graph is then exactly the difference
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between the negative potential and the kinetic energy on the y-axis. In order to conserve energy,
the curve of possible kinetic energies (dotted line in figure 1) that the particle may take on will
always have the same distance E/mp from the negative potential curve. Because v2 ≥ 0, the
spatial boundaries of a particle’s trajectory can be found by following the curve of possible
kinetic energies of the particle to the points where v2 = 0.

α

E/mp

E/mp

spatial boundary for α
−φ

x

−φ, 1
2v

2

0

Figure 1: A qualitative plot of a potential −φ
and a particle α. The boundaries of the particle’s
trajectory can be found using energy conserva-
tion E/mp = 1

2v
2 + φ = const by following the

curve of the particle’s kinetic energies (dotted
line) to the points where v2 = 0.

α

γ

β

spatial boundary for γ

spatial boundary for β−φB

−φA

−φtot = −(φA + φB)

x

−φ, 12v2

0

Clump B Clump A

Figure 2: Qualitative potential of a halo containing two
clumps A and B. Three particles assigned to B are shown:
α is not bound to B, β is bound, γ satisfies the energy
condition to be bound, but can wander off into clump A
and shouldn’t be considered as such.

This fact changes the situation significantly for the interpretation of what particles should be
considered bound as follows. Consider now an isolated halo that consists of two clumps, A
and B, where B is a smaller clump nested within clump A. Their potentials are qualitatively
depicted in figure 2. Three particles assigned to B with different kinetic energies are marked,
representing three different cases:

• Particle α has a kinetic energy higher than the potential, it is clearly not bound to the
clump B.
• Particle β has a kinetic energy lower than the potential at that distance from the centre
of mass, so it will remain bound on an elliptic trajectory around the centre of mass.
• Particle γ is considered energetically bound to the clump just like β, i.e. it satisfies

condition (5), but it won’t necessarily remain on an elliptic trajectory around clump B’s
centre of mass: Because of clump A’s neighbouring potential, the particle can leave the
boundaries of clump B and wander off deep into clump A.

These considerations show that due to the fact that subhaloes will always have neighbouring
structure by definition, there will be particles like γ that can wander off into neighbouring
clumps even though they satisfy condition (5). It is obvious that particles like γ shouldn’t be
considered as bound and that therefore the condition for a particle to be bound needs to be
modified appropriately. Since the reason γ can wander off is because its boundary extends past
the interface that connects the two clumps, the condition for a particle to be bound must be
that its trajectory must never reach that interface. Defining φS to be the potential of clump B
at the interface to the neighbouring structure that is closest to B’s centre of mass, the condition
for a particle to be bound exclusively to a particular clump can be written as

E/mp = 1
2v

2 + φ− φS < 0 (9)

or equivalently:

v <
√
−2(φ− φS) (10)
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According to the argumentation above and figures 1 and 2, it is to be expected that demanding
particles to be exclusively bound will find more unbound particles than not doing so, where
particles close to the centre of mass should be more likely to be exclusively bound than the
particles closer to the edge of the subhalo.

2.4. Parallel implementation

RAMSES is a parallel code which makes use of the MPI standard. The use of MPI (message passing
interface) allows a process on a distributed memory architecture to be executed in parallel by
multiple tasks and defines various types of communications between them.

The fundamental parallelisation strategy used in RAMSES is domain decomposition, where a
part of the total spatial computational domain is assigned to each processing unit, or “MPI
task”. It makes use of the fact that most calculations on grids do not require the knowledge
of the entire computational domain, but only the cells in their vicinity. The basic idea of the
domain decomposition is illustrated in figure 3, where a 2D-grid is split between two processors.
The partial domains do not overlap and a thin layer of cells, called the “virtual boundary”, is
introduced where the domain was cut. Only necessary information is then communicated across
MPI tasks from the other tasks’ “real domain” into the virtual boundary, so that the virtual
boundary copies what happens in the domains of other tasks, allowing the execution of the code
as if the domain wasn’t split. Two tasks working on the same problem allows a much faster
execution time, but it also enables the solution of bigger problems that only one task couldn’t
do on its own, e.g. because of memory restrictions.

no domain decomposition

computational domain

processor

domain decomposition

processor 1 processor 2

co
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communication

communication

Figure 3: The basic idea of domain decomposition. Here a 2D-grid is split between two processors (right)
instead of only one (left). The partial domains do not overlap and where the domain was cut, a “virtual
boundary” is introduced. Necessary information is then communicated between processors from the other
tasks’ “real domain” into the virtual boundary, so that the virtual boundary copies what happens in the
domains of other tasks and allows the execution of the code as if the domain wasn’t split.

PHEW uses the virtual mesh boundary as well, since every cell on each domain must have the
information of all its neighbours. Similarly to the virtual mesh boundary, a virtual peak bound-
ary is necessary. For the peak patch merging step, each peak patch on each task’s domain needs
the information of the peak patches that surround it. If, for example, a peak patch is split in
two by the domain boundaries between two tasks, both tasks need to know all the peak patch’s
neighbours on the other task’s domain. Unlike the mesh boundary however, the virtual peak
boundary is not a fixed region in space. Because of the merging, peaks gain neighbours they
hadn’t had before. This requires that new peaks are introduced to the virtual peak boundary
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during the merging procedure. Once introduced, all other peak properties, e.g. its relevance
and saddle points, can be transferred by means of MPI communication.

The virtual peak boundary requires two types of communications. One type is the collection
(sum, minimum or maximum) of a value for a peak from all tasks which have that particular
peak patch in their virtual boundary to the owner of the peak. The “owner” of the peak is the
task where the density peak is in the “real” domain, as opposed to the virtual mesh boundary.
Imagine for example the calculation of a peak patch’s total volume on multiple tasks: Each task
would compute the volume of that peak patch on its own domain and then all these partial
results would be sent to the peak’s owner and summed up.
In that scenario only the peak’s owner has the total volume of the patch, but the ones that have
it in their virtual boundary still only have their partial values. This brings us to the second
required type of communication: A scatter of data from the owner of the peak to all tasks with
that particular peak in their virtual boundary. Following the example where the total volume
of a peak patch is computed, the owner of the peak would send the computed total volume
of the peak patch to all the tasks which require that information. In order to perform these
communications, a communication structure (called the “peak communicator”) must be built
first. The purpose of the peak communicator is to establish how many peaks of every task are
owned by any other task, or in other words: “what needs to be sent (and received from) where”.
Once that is known, the communications between the processes and thus the parallel merging
can be performed.

2.5. Dark Matter Halo Merger Trees

2.5.1. Terminology

Before having a closer look at dark matter halo merger trees and how to make them, some clear
definitions and terminology on the subject are necessary. In this work, the terminology as set
by the Merger Tree Comparison Project (Srisawat et al. 2013) is adapted:

• A halo is a dark-matter condensation as returned by a halo-finder.
• Haloes may be spatially nested: in that case the outer halo is the main halo and the other

haloes are subhaloes. Where no distinction between subhaloes and main haloes is made,
they will be collectively referred to as clumps.
• Haloes are defined at distinct snapshots. Snapshots correspond to particular values of
cosmic time and contain the particle IDs, mass, location & velocity for each dark matter
particle in the simulation.
• For two snapshots at different times to the older one (i.e. higher redshift) is referred to as
A and the younger one (i.e. lower redshift) as B.
• A graph is a set of ordered halo pairs, (HA, HB), where HA is older than HB. It is the
purpose of the merger-tree codes to produce a graph that best represents the growth of
structure over cosmic time. HA and HB are usually taken from adjacent snapshots, but
this is not a requirement as there are occasions where haloes lose their identity and then
reappear at a later time.
• Recursively, HA itself and progenitors of HA are progenitors of HB. Where it is necessary
to distinguish HA from earlier progenitors, the term direct progenitor will be used.
• Recursively, HB itself and descendants of HB are descendants of HA. Where it is necessary
to distinguish HB from later descendants, the term direct descendant will be used.
• This work is primarily concerned with merger trees for which there is precisely one direct
descendant for every halo. Note that it is possible for haloes near the minimum mass limit
to have zero descendants: such haloes are omitted from the analysis.
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• In the case that there are multiple direct progenitors, it is required that precisely one of
these is labelled the main progenitor.
• The main branch of a halo is a complete list of main progenitors tracing back along its
cosmic history.

2.5.2. Aim

Merger trees follow the growth and merges of dark matter haloes over cosmic history. In the
hierarchical structure formation scenario, starting with a nearly uniform density field of the
Universe, large, massive haloes are thought to form mainly through a series of merging events
of smaller haloes over cosmic time. Figure 5 shows schematically how a massive halo may form
through consecutive merging events. Because galaxies form inside the potential well dark matter
haloes, knowledge of how many merging events a halo underwent during its lifetime is crucial
for accurate mock galaxy catalogues. After a merging event, the galaxy of the smaller halo that
has been “swallowed up” by a bigger one has no reason to simply vanish without a trace. The
“swallowed up” halo might become a subhalo, or, if it is small enough or after some time, it
might not be detectable as substructure in the simulation any more. Galaxies of haloes that
dissolve in this manner are referred to as “orphan galaxies”. Their importance can be clearly seen
in figure 4, which shows the most massive haloes resulting from two cosmological simulations
described in section 4.2. If orphan galaxies are taken into account, the number of galaxies in
these haloes grows from less than 100 galaxies based on subhaloes with a minimal number of
bound particles to a few thousand.

t1

t2

t3

t4

t5

Figure 5: Illustration of a merger tree, showing the formation history of some halo over cosmic time through
a series of merging events with t1 < t2 < t3 < t4 < t5. The x-axis has no physical meaning. The main branch
of this merger tree is signified by the thicker arrows. The size of the circles represents the haloes’ masses.

In dark matter simulations haloes however are only defined at distinct snapshots. The aim of
a merger tree code is to link haloes from an earlier snapshot to the haloes of the consecutive
snapshot, i.e. to find the descendants of the haloes of the earlier snapshot within the consecutive
snapshot, thus enabling the tracking of growth and merges of haloes in a simulation.

A straightforward method to link progenitors with descendants in adjacent snapshots is to trace
particles by their unique ID. All but one merger tree algorithm tested in Srisawat et al. 2013
also rely on particle IDs to connect progenitor clumps with descendant ones. Essentially this
would mean to check in which clumps of a later snapshot B did particles that were found to
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Figure 4: Projection along the z-axis of the most massive dark matter haloes from the G69 (left) and the
G100 (right) simulations with marked galaxy positions at z = 0. The simulations used are described in section
4.2. The circles representing galaxies do not indicate their physical size. The arrows indicating the physical
lenght of the image correspond to one fifth of the plotted region in each direction.
Noticeably, some dark matter condensations appear to have no satellite galaxy assigned to them. There are
two reasons for this: Firstly, because the visualisation technique used is a projection, no information on how
stretched along the z-axis these clumps are is shown. Secondly, the stricter unbinding criterion was applied
for these simulations, where a particle is only considered bound if it can’t escape the spatial boundaries of the
clump (see section 2.3 for details). This tends to remove more particles from a clump then when not applied,
and possibly remove enough particles from a clump so that it doesn’t satisfy a lower mass threshold condition.
If that is the case, such clumps are removed from the (sub)halo catalogue.

13



be in a clump in an earlier snaphot A end up in. Other methods are also conceivable: JMERGE
(Srisawat et al. 2013) for example uses the properties of haloes at both snapshot A and B to
estimate where each halo should be at the midpoint in time between the two snapshots, and
then links the haloes based on these calculated positions.

Finally, the presented merger tree algorithm is required to run on the fly and in parallel using
the MPI library.

2.5.3. Restrictions, Complications and Solutions

To obtain a merger tree, as opposed to a merger graph, each progenitor may have exactly one
direct descendant halo. Descendants however may have multiple direct progenitors. In this case,
exactly one of the direct progenitors must be labelled as the main progenitor. The other direct
progenitors of this descendant are then assumed to have merged into the main direct progenitor
to form the descendant.

Descendant candidates for any progenitor are identified by tracing particles of that progenitor
across snapshots. Naturally, those particles may end up in multiple clumps, giving multiple
descendant candidates for a progenitor. In such cases, the most promising descendant candidate
will be called the main descendant. To find a main progenitor and a main descendant, usually
some merit function M is defined, which is to be maximised or minimised, depending on its
definition.

LetMpd,adj(A,Bi) be the merit function to be maximised for a number of descendants Bi to be
a main descendant of a progenitor A, and let nmb be the total number of particles of progenitor
A that are being traced to a later adjacent snapshot, where the descendants Bi are found.
nmb may or may not be the total number of particles of A. Then a straightforward ansatz for
Mpd,adj(A,Bi) would be:

Mpd,adj(A,B) ∝ nA∩Bi

nmb
(11)

where nA∩Bi is the number of traced particles of A found in B. Similarly, if Mdp,adj(Ai, B) is
the merit function to be maximised for a number of progenitors Ai to be the main progenitor
of a descendant B in an adjacent snapshot, then a straightforward ansatz would be:

Mdp,adj(Ai, B) ∝ nAi∩B
NB

(12)

where NB is the total number of particles in clump B. In these two merit functions, nmb and
NB constitute a norm.

These two merit functions can be united into one by considering that when evaluating the value
ofMadj , in both cases the denominator is independent of the candidates for which it is evaluated:
The number of particles traced, nmb, won’t depend on what or how many descendant candidates
have been identified. The same goes for total the number of particles of clump B, which won’t
change by choosing some progenitor candidate or the other as the main progenitor. So the merit
function for adjacent snapshots can be reduced to

Madj(A,B) ∝ nA∩B (13)

A complication arises from the fact that the clump-finder in RAMSES defines the main halo as
the one with the highest density peak. If for example a halo consists of two similar clumps with
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similar height of their respective density peaks, then it is possible that over time small variations
in the density peak will lead to oscillations in the identification of the main halo between these
two clumps. The particle unbinding algorithm will then look for unbound particles in what was
found to be the subhalo and pass them on to the main halo, increasing its mass and decreasing the
subhalo’s mass. This is amplified when a particle is defined to be bound if and only if it mustn’t
cross the spatial boundaries of the subhalo. Therefore, if between snapshots the identification of
which clump is the main halo varies, then strong mass oscillations can be expected. To counter
this behaviour, the merit function can be extended to prefer candidates with similar masses:

Madj(A,B) = nA∩B
m>

m<
− 1 (14)

The factor (m>/m< − 1)−1 increases as m> → m<, where m< and m> are the smaller and
larger mass of the descendant-progenitor pair (A,B), respectively. An overview of what merit
functions were chosen in other merger tree algorithms is given in table 1 in Srisawat et al. 2013.

t1

t2B1 B2

A2 A1

Figure 6: Illustration of a progenitor A1 at time t1 which is partially merged into a descendant B1 at time
t2 > t1, but some other part B2 isn’t. Because A1 is not the main progenitor of B1, by assigning its descendant
only according to the merit function (14) would not pass on its formation history to B2, but treat it as newly
formed. The size of the circles represents the haloes’ masses, the x-axis has no physical meaning.

Since a descendant may have multiple progenitors, but each progenitor may have only one
descendant, a question that needs to be adressed is how to deal with situations where multiple
descendant candidates, i.e. descendant clumps that contain tracked particles of some progenitor,
are found. Problems arise for example when some progenitor A1 is not the main progenitor of
its main descendant B1, but also has fractured into another descendant candidate B2. This
situation is schematically shown in figure 6. Relying only on the merit function (14), progenitor
A1 will seem to have merged with A2, the direct progenitor of B1, in order to form B1. The
fractured remainder, B2, will be treated as newly formed, provided it has no other progenitor
candidates. In this case the entire formation history of B2 would be lost. In order to preserve
history, instead of merging progenitor A1 into B1, the link to B2 should be preferred. This is
simpler to implement into the algorithm than to express via the merit function. If A1 is not
the main progenitor of its main descendant B2, then don’t merge it into B2 until all of A1’s
descendant candidates have found their own main progenitor, and give priority to A1 for being
a progenitor to some descendant which is not its main descendant over merging it into its main
descendant.

Finally, in some cases a subhalo passing close to the core of its main halo may not be identified
as an individual subhalo and appear to be “swallowed up” by the main halo, but will re-emerge
at a later snapshot. Such a scenario is shown in figure 7. When this occurs, the merger tree
code will deem the subhalo to have merged into the main halo, and will likely find no progenitor
for the re-emerged subhalo, thus treating it as newly formed. This is a problem because this
will essentially erase the growth history of the subhalo, regardless of its size. This way, massive
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clumps may be found to just appear out of nowhere in the simulation. For this reason, it is
necessary to check for links between progenitors and descendants in non-consecutive snapshots
as well. As the presented merger tree code works on the fly, future snapshots will not be available
at the time of the tree making, so it will be necessary to check for progenitors of a descendant
in multiple past snapshots. This can be achieved by keeping track of the most strongly bound
particle of each clump when it is merged into some other clump. (These particles are also used
to follow orphan galaxies.)

Priority is given to progenitor candidates in adjacent snapshots. Only if no progenitor candidates
have been found for some descendant, then progenitor candidates from non-adjacent snapshots
will be searched for. Because these progenitors from non-adjacent snapshots are only tracked
by one single particle, the previous merit function can’t be applied. Instead, a straightforward
choice would be to find the orphan galaxy particle within the descendant clump which is most
tightly bound, i.e. minimises E in condition (10).

The Consistent Trees algorithm (Behroozi et al. 2013) for example addresses this problem
differently. The positions and velocities of descendants are evolved back in time and compared
to progenitor candidate’s properties. If they differ too much, the links between them are cut, and
for descendants without likely progenitors, new haloes at previous snapshots are created. Such
introduced haloes are being kept track of for several snapshots, allowing to link identified clumps
across non-adjacent snapshots. Others, like LHaloTree (Springel et al. 2005) and D-Trees (Jiang
et al. 2014), allow the search for a descendant in later snapshots in the same manner as if the
snapshots were adjacent. Intuitively this might seem like a more reliable method to create merger
trees, however it is considerably more computationally expensive and therefore not suited for
on the fly merger tree creation.

2.6. Creating Mock Galaxy Catalogues from Dark Matter Simulations

Once merger trees from DMO simulations are available, the only missing link to obtain mock
galaxy catalogues is a galaxy-halo connection. Various approaches have been used to establish
such a connection. Wechsler and Tinker 2018 distinguish between “two basic approaches to
modeling the galaxy-halo connection, empirical modeling, which uses data to constrain a specific
set of parameters describing the connection at a given epoch or as a function of time, and physical
modeling, which either directly simulates or parametrizes the physics of a galaxy formation such
as gas cooling, star formation, and feedback.” The models are not mutually exclusive: Starting
from a hydrodynamical simulation as an example of a very physical model, where dark matter,
gas, and star formation processes are directly simulated (e.g. Chaves-Montero et al. 2016),
some assumptions may be relaxed and constrained by data instead. Semi-analytic models (e.g.
White and Frenk 1991, Bower et al. 2006, Somerville and Primack 1999, Kauffmann, White,
and Guiderdoni 1993) for example approximate some processes with analytical prescriptions,
however parameters of these prescriptions need to be constrained empirically with observational
data. Physical models are in general computationally more expensive, making them less suitable
to be used on the fly.

Broadly speaking, empirical models of the galaxy-halo connection make no effort to explain the
physical processes governing galaxy formation, but are mainly concerned with constraining a
prescription of galaxy properties given a halo catalogue. The Halo Occupation Density (HOD)
model (e.g. Seljak 2000, Berlind and Weinberg 2002) for example specifies the probability
distribution of the number of galaxies that meet some criteria like a luminosity or stellar mass
threshold in a halo, typically depending on its mass. Conditional Luminosity Functions (e.g.
Vale and Ostriker 2006) and Conditional Stellar Mass Functions (e.g. Yang, Mo, and van den
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Figure 7: Illustration of how haloes can seemingly merge into another one and re-appear a few snapshots
later. The green and red particles are two initially distinct haloes that pass through each other. The galaxies
assigned to them are marked by a star with the same colour as the particles. Black stars mark orphan galaxies,
which have lost their unique host halo. The number in the upper right corner of each plot is the snapshot
number that is depicted. In snapshots 27-31, the halo-finding algorithm didn’t identify both haloes as distinct
objects. However by tracking the red halo’s orphan galaxy, it was possible to link the halo in snapshot 32 all
the way back to snapshot 26.
The simulation was created using DICE (Perret 2016). Both haloes are identical with mass of 5 · 1010M�,
each containing 5000 particles and following a NFW mass profile. The plotted region corresponds to 400 kpc
on each side.
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Bosch 2009) go one step further and describe the full distribution of galaxy luminosities or
masses for a given halo mass.

Other empirical models make the assumption that the most massive galaxies live in the most
massive haloes and then rank-order galaxies from observations by mass (or some other property)
with dark matter (sub)haloes from simulations. These techniques are commonly called ‘Halo
Abundance Matching’ (HAM), or ‘Subhalo Abundance Matching’ (SHAM) in case one assumes
that subhaloes host a galaxy on their own (e.g. Kravtsov et al. 2004, Vale and Ostriker 2004).
A further commonly used assumption is based on the fact that subhaloes, once accreted by their
respective host halo, quickly loose their mass as their outer regions are stripped away due to tidal
forces. Nagai and Kravtsov 2005 have shown that the galaxies hosted by subhaloes however,
because they’re located close to the centre of the subhalo, are stripped of their mass only much
later. This leads to the approximation that the stellar mass of subhaloes’ galaxies isn’t directly
determined by the current mass of the subhalo, but to either the mass of the subhalo at the
time it was accreted by the main halo or the subhalo’s peak mass during its formation. This is
yet another reason why merger trees are essential for mock galaxy catalogues.

Using either abundance matching or by constraining a parametrisation with observational data,
the typical galaxy stellar-mass-to-halo-mass (SMHM) relation can be determined, which essen-
tially gives the expected stellar mass for any given halo mass at different epochs such that the
resulting galaxy catalogues coincide with observations. Usually a one-to-one monotonic rela-
tion between stellar and halo mass assumed. In this work, such a SMHM relation as found by
Behroozi, Wechsler, and Conroy 2013 is used to determine galaxy stellar masses from merger
trees. This SMHM relation was chosen for two reasons: Firstly, Behroozi, Wechsler, and Conroy
2013 find that the commonly used double power law for the SMHM relation, like the one used
in Moster, Naab, and White 2013, cannot accurately fit the unique shape of the SMF. Secondly,
Behroozi, Wechsler, and Conroy 2013 fits their data up to z ∼ 8, while others like Moster, Naab,
and White 2013 and Yang et al. 2012 “only” go up to z ∼ 4.

The parametrisation is as follows:

log10(M∗(Mh)) = log10(εM1) + f

(
log10

(
Mh

M1

))
− f(0) (15)

f(x) = − log10(10αx + 1) + δ
[log10(1 + exp(x))]γ

1 + exp(10−x) (16)

Here M∗ is the stellar mass and Mh is the halo mass. Because the stellar mass is thought to de-
pend not explicitly on the mass, but on the depth of the potential well where the baryonic matter
is located, the mass used to obtain stellar masses within the code is always inclusive, meaning
that any parent clump will be considered to contain its substructure’s mass, independently of
which mass definition of substructure is used to link clumps together between snapshots for the
generation of merger trees. For central haloes, Mh is its current mass, while for satellites, Mh

is the peak progenitor mass in its entire formation history. The galaxy is placed at the position
of the most tightly bound particle of each dark matter clump.

The other parameters from equations (15) and (16) and their best fits as found by Behroozi,
Wechsler, and Conroy 2013 are:

ν(a) = exp(−4a2) (17)

log10(M1) = M1,0 + (M1,a(a− 1) +M1,zz)ν (18)
= 11.514 + (−1.793(a− 1) + (−0.251)z)ν

log10(ε) = ε0 + (εa(a− 1) + εzz)ν + εa,2(a− 1) (19)
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= −1.777 + (0.006(a− 1) + 0.000z)ν − 0.119(a− 1)

α = α0 + (αa(a− 1))ν (20)
= −1.412 + (0.731(a− 1))ν

δ = δ0 + (δa(a− 1) + δzz)ν (21)
= 3.508 + (2.608(a− 1) + ((−0.043)z)ν

γ = γ0 + (γa(a− 1) + γzz)ν (22)
= 0.316 + (1.319(a− 1) + 0.279z)ν

with z bein the redshift and a being the cosmological scale factor. Additionally, one would not
expect two haloes of same mass Mh to also each host a galaxy of exactly the same mass. Haloes
may have different formation histories, spins, and concentrations even when having exactly the
same mass. For this reason, a lognormal scatter in the halo mass is introduced, which scales
with redshift via a two-parameter scaling:

ξ = ξ0 + ξa(a− 1) = 0.218 + (−0.023)(a− 1) (23)

Lastly, Behroozi, Wechsler, and Conroy 2013 also introduce parameters to account for observa-
tional systematics, which haven’t been used in scope of this work.

3. Making and Testing Merger Trees

3.1. Making Merger Trees

The first step for any merger tree code is to identify plausible progenitor candidates for descen-
dant clumps as well as descendant candidates for progenitor clumps. In this algorithm, this
is done by tracking up to a maximal number, labelled nmb, of particles per progenitor clump.
The minimal number of tracker particles is given by the mass threshold for haloes. The tracker
particles of any halo are chosen to be the nmb particles with the lowest energy E:

E = mv2 + φ(r)

where m is the particle’s mass, v is the particle’s velocity relative to the halo’s bulk velocity,
φ is the gravitational potential of the halo and r is the position of the particle. If E < 0, a
particle is considered to be energetically bound to the halo. Selecting the nmb particles with
lowest energy E thus corresponds to choosing the “nmb most (tightly) bound particles of the
halo”. This choice is made because the most strongly bound particles are expected to more likely
remain within the clump between two snapshots.

For every clump in the current snapshot, the nmb tracker particles are found and written to
file. In the following output step, those files will be read in and sorted out: The clumps of the
previous snapshot will be the progenitors of this snapshot. Based on in which descendant clump
each progenitor’s particles ended up in, progenitors and descendants are linked, i.e. possible
candidates are identified this way.

Next, the main progenitor of each descendant and the main descendant of each progenitor
need to be found. This search is performed iteratively. A main progenitor-descendant pair is
established when the main progenitor of a descendant is the main descendant of said progenitor.
At every iteration, all descendant candidates of all progenitors that haven’t found their match
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yet are checked; The descendants without a matching progenitor however only move on to the
next best progenitor candidate. For both descendants and progenitors, all candidates are ranked
from “best” to “worst” based on the merit function (14). The iteration is repeated until every
descendant has checked all of its progenitor candidates or found its match. Progenitors that
haven’t found a main descendant that isn’t taken yet will be considered to have merged into
their best fitting descendant candidate.

After the iteration, any progenitor that is considered as merged into its descendant will be
recorded as a “past merged progenitor”. Only one, the most strongly bound, particle and the
time of merging will be stored for past merged progenitors. This particle is referred to as the
“galaxy particle” of the merged progenitor. Storing this data will allow to check in later, non-
consecutive snapshots whether the progenitor has truly merged into its main descendant and to
track orphan galaxies.

Then descendants that still haven’t got a progenitor at this point will try to find one in non-
consecutive past snapshots: The particles that the descendant consists of are checked for being
a galaxy particle of a past merged progenitor. The most strongly bound galaxy particle will be
considered the main progenitor of the descendant under consideration.

Descendants that still haven’t found a progenitor at this point are deemed to be newly formed.
This concludes the tree-making and the results are written to file.

Because every processing unit in the current implementation reads in all progenitor data, which
unlike the current clump data doesn’t change any more, no intricate and flexible communication
structures like a peak communicator for the clump finder are necessary. Simple collective MPI
communications suffice.

Lastly, there is an option to remove past merged progenitors from the list once they merged
into their main descendants too many snapshots ago. By default, the algorithm will store them
until the end of the simulation. For the interested reader, a detailed description of the merger
tree algorithm is given in appendix A.

3.2. Testing Parameters of the Merger Tree Algorithm

3.2.1. Methods

The current implementation of the merger tree algorithm allows for multiple free parameters
for the user to choose from, which will be introduced and tested further below in this section.
Testing these parameters is not a straightforward matter, mainly because there is no “correct
solution” which would enable a comparison and error quantification. Nevertheless, one could
define a set of quantities one deems a priori favourable for a merger tree and cross-compare
these quantities obtained for varying parameters on an identical cosmological simulation. This
method was also used in the “Sussing Merger Trees Comparison Project” (Srisawat et al. 2013,
Wang et al. 2016, Avila et al. 2014). Some or similar quantifications from the “Sussing Merger
Tree” paper series are adapted in this work, as they seem sensible and even allow for a rough
cross-comparison with other merger tree codes.

The following properties will be used to quantify the merger trees:

• Length of the Main Branch
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The length of the main branch of z = 0 haloes gives a most basic measure of how far
back in time the formation history of these haloes can be tracked. Naturally, longer main
branches should be considered a favourable feature for a merger tree code.
In this work, the length of the main branch is defined as the number of snapshots a halo
and its progenitors appear in. A newly formed halo at the z = 0 snapshot, which doesn’t
have any progenitors, will by definition have the main branch length of 1. If a halo appears
to merge into another, but re-emerges at a later snapshot and is identified to do so, then
the snapshots where it is missing from the halo catalogue will still be counted towards the
length of the main branch as if it weren’t missing.

• Branching Ratio
A further simple tree quantity is the number of branches of the tree. The main branch is
included in this count, thus the minimal number of branches for each clump at z = 0 will
be 1.
As long as the halo catalogue remains unchanged, lower branching ratios mean less merging
events and therefore should be accompanied by longer main branches.
In the picture of bottom-up structure formation, where larger object form through re-
peated mergers of smaller ones, one would expect more massive clumps to have longer
main branches and a higher branching ratio.

• Misidentifications, Quantified by Displacements
Since no unique correct solution exists, the same displacement statistic ∆r as is done in
Wang et al. 2016 to quantify misidentifications is used:

∆r = |rk+1 − rk − 0.5(vk+1 + vk)(tk+1 − tk)|
0.5(R200,k +R200,k+1 + |vk+1 + vk|(tk+1 − tk)

(24)

where rk+1, vk+1 and rk, vk are the position and velocity of a clump at snapshot k + 1
and its progenitor at snapshot k, respectively; tk+1 and tk are the cosmic times at which
the two clumps were defined, and R200 is the radius that encloses an overdensity of 200
times the critical density ρc = 3H2

8πG .
It can be interpreted as the difference between the actual displacement (rk+1 − rk) and
the expected one (0.5(vk+1 + vk)(tk+1 − tk)), normalized by an estimate of how large the
displacement is allowed to be to rule out a clear misidentification. This estimate is the
sum of the average halo size, 0.5(R200,k +R200,k+1), allowing the exact clump position to
vary within its own boundaries, and an estimate for the distance travelled based on the
time interval and average velocities, 0.5|vk+1 + vk|(tk+1 − tk).
Values of ∆r > 1 would indicate a misidentification, so the parameters minimising ∆r

should be preferred, provided the acceleration is approximately uniform. This is often
not the case for subhaloes, which will shift the distribution of ∆r towards higher values.
Nevertheless, it is used for subhaloes as well, since the goal is a simple cross-comparison
of varying parameters, hoping to get some indication towards which parameters produce
the most reliable merger trees.

• Logarithmic Mass Growth[allowframebreaks]
The logarithmic mass growth rate of haloes is approximated discretely by

d logM
d log t ≈

(tk+1 + tk)(Mk+1 −Mk)
(tk+1 − tk)(Mk+1 +Mk)

≡ αM (k, k + 1) (25)

where k and k+ 1 are a clump and its descendant, with masses Mk and Mk+1 at times tk
and tk+1, respectively.
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To reduce the range of possible values to the interval (−1, 1), Wang et al. 2016 define

βM = 2
π

arctan(αM ) (26)

Within the hierarchical structure formation scenario, one would expect haloes to grow
over time, thus a distribution of βM should be skewed towards βM > 0. βM → ±1 imply
αM → ±∞, indicating extreme mass growth or losses.

• Mass Growth Fluctuations
Mass growth fluctuations can be quantified by using

ξM = βM (k, k + 1)− βM (k − 1, k)
2 (27)

where k − 1, k, k + 1 represent consecutive snapshots. When far from zero, it implies an
extreme growth behaviour. For ξM → ±1, βM (k, k + 1) → ±1 and βM (k − 1, k) → ∓1,
indicating extreme mass loss followed by extreme mass growth for the upper sign, and
the opposite behaviour for the lower sign. Within the hierarchical structure formation
scenario this behaviour shouldn’t occur and such an occurrence might indicate either a
misidentification by the tree code or an error in the mass assignment of the halo finder.

In the evaluation, no distinction between main haloes and subhaloes is made. Distinguishing
between those two cases gives no information on which parameters are preferable that can’t
already be seen when no distinction is made, so for clarity’s sake, the evaluations for main
haloes and subhaloes individually are omitted from the main body of this work, but the figures
for the displacement statistics, logarithmic mass growth and mass growth fluctuations for haloes
and subhaloes separately can be found in appendix B.

3.2.2. Parameters Influencing the Halo Catalogue

In the current implementation, there are two parameters which influence the halo catalogue
aside from mass and density thresholds. The first one concerns the mass definition of a subhalo.
By construction, the mass of a halo contains all its substructure’s mass. This isn’t necessarily
the case for subhaloes though. In a hierarchical structure formation scenario, substructures are
expected to contain substructures on their own. Whether to recursively include substructure
mass to their respective parent structure is a matter of choice and application. The influence
of this choice on the merger trees is shown in figures 9, 10 and 11. When subhaloes’ masses are
defined to include their respective substructure masses, the results will be labelled as inclusive,
or exclusive otherwise.

A second matter of definition is in which case a particle is to be considered as bound to a clump.
The concept of ”exclusively bound“ particles, which aren’t allowed to leave the spatial boundaries
of their host clump, was introduced in section 2.3. It is to be expected that demanding particles
to be exclusively bound will find more unbound particles than not doing so, thus changing the
subhalo catalogue.

The influence of this choice on the merger trees is also shown in figures 9, 10, and 11, along with
the influence of the previously described inclusive and exclusive mass definitions. When
bound particles are allowed to leave the clump’s boundaries, the results will be labelled as no
saddle, or saddle otherwise.
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3.2.3. Dataset Used for Testing

All tests are performed on the same dark matter only simulation which contains 2563 ≈ 1.7 · 107

particles of identical mass mp = 1.55 · 109M�. The Hubble constant H0 = 70.4 km s−1Mpc−1

and density parameters Ωm = 0.272 and ΩΛ = 0.728 were used. The density threshold for
clump finding was chosen to be 80ρc and the saddle threshold for halos was set to 200ρc, where
ρc = 3H2

8πG is the cosmological critical density. Only clumps with at least 10 particles were kept.

The output strategy was chosen as follows: As virtually no haloes were found before a ≤ 0.1,
only few snapshots were stored up to a = 0.1 in steps of ∆a ≈ 0.02. From this point on,
snapshots were created every ∆t ≈ 0.3 Gyrs up until a = 1

3 , after which a smaller time interval
of ∆t ≈ 0.2 Gyrs were chosen. This choice resulted in 67 snapshots to get to z = 0. The
simulation was then continued for 3 further snapshots with ∆t ≈ 0.2 Gyrs to ensure that the
merging events at z = 0 are actually mergers and not clumps that will re-emerge later.

A visualisation of the merger tree of the most massive main halo of this simulation is shown in
figure 8. Stunningly, even for a relatively low resolution simulation like the one used, incredibly
complex formation histories can be uncovered and followed back to the first snapshot with
identifiable haloes. Note that this is only the tree of the central halo, not containing any
subhaloes that are still identifiable as such.
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Figure 8: The merger tree of the most
massive central halo in the simulation, ob-
tained with the parameters exclusive and
nmb = 1000. The redshift at the time of the
snapshot is given on the x-axis, the y-axis
has no physical meaning.
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3.2.4. Influence of the Definition of Subhalo Mass
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Figure 9: Logarithmic mass growth and mass growth fluctuation distributions for progenitor - descendant
pairs or three consecutive nodes in a branch, respectively, with masses above 5 ·1011M� throughout the entire
simulation for the halo catalogue influencing parameters: whether subhalo particles are included (inclusive)
or excluded (exclusive) in the clump mass of satellite haloes, and whether to consider particles which might
wander off into another clump as bound (no saddle) or not (saddle). The distribution is computed as a
histogram which is normalised by the total number of events found.
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Figure 11: Distribution of the displacements for pro-
genitor - descendant pairs with masses above 5 ·
1011M� throughout the entire simulation for the
halo catalogue influencing parameters: whether sub-
halo particles are included (inclusive) or excluded
(exclusive) in the clump mass of satellite haloes,
and whether to consider particles which might wan-
der off into another clump as bound (no saddle) or
not (saddle). The distribution is computed as a his-
togram which is normalised by the total number of
events found.
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Figure 12: Distribution of the displacements for pro-
genitor - descendant pairs with masses above 5 ·
1011M� throughout the entire simulation for varying
numbers of clump tracer particles nmb. The distribu-
tion is computed as a histogram which is normalised
by the total number of events found.

In accordance to the hierarchic structure formation picture, more massive clumps tend to have
longer main branches and a higher branching ratio in all cases. This is clearly visible from the
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Figure 10: Length of main branches, defined as the number of snapshots this clump appears in, and the
number of branches including the main branch, for the halo catalogue influencing parameters of z = 0 clumps:
whether subhalo particles are included (inclusive) or excluded (exclusive) in the clump mass of satellite
haloes, and whether to consider particles which might wander off into another clump as bound (no saddle)
or not (saddle). Four distributions are shown, for four different ranges of numbers of particles at z = 0
exclusively assigned to the clump: less then 100 (top), 100-500, 500-1000 and more than 1000 (bottom),
where each particle has mass mp = 1.55 · 109M�. The distribution is computed as a histogram which is
normalised by the total number of events found per particle count group.
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inclusive
saddle

exclusive
saddle

inclusive
no saddle

exclusive
no saddle

total clumps 16262 16262 17242 17242
max number of particles in a clump 414570 414570 271438 271438
median number of particles in a clump 84 83 93 93
average main branch length group I 22.980 23.153 20.426 20.527
average main branch length group II 48.653 48.835 48.132 48.642
average main branch length group III 54.358 54.715 54.305 54.904
average main branch length group IV 54.546 53.958 56.110 56.265
average number of branches group I 1.318 1.327 1.230 1.230
average number of branches group II 3.480 3.448 3.632 3.603
average number of branches group III 8.466 8.670 8.673 8.661
average number of branches group IV 29.771 29.457 28.783 28.607

Table 1: Average data for all clumps at z = 0 for the four halo catalogue modifying parameter pairs: whether
subhalo particles are included (inclusive) or excluded (exclusive) in the clump mass of satellite haloes,
and whether to consider particles which might wander off into another clump as bound (no saddle) or not
(saddle). The groups I, II, III and IV are defined as clumps that contain less then 100, 100-500, 500-1000 or
more than 1000 particles, respectively.

average length of the main branch and the average branching ratio of clumps at z = 0, binned
in four groups by their mass, which are given in table 1. The average main branch length for
clumps with more that 500 particles is ∼ 55, meaning that on average, haloes with mass above
∼ 7.75 · 1011M� can be traced back to redshift ∼ 3.

The length of the main branches for the same four mass bins of clumps are shown in figure
10. Interestingly, small clumps with less than 100 particles seem to have a somewhat constant
formation rate from z ∼ 2 until z ∼ 0.2. Furthermore they too can be traced back to high
redshifts, indicating good performance of the merger tree algorithm.

Whether subhalo masses are computed in an exclusive or inclusive manner seems to have
negligible effect on the branching ratio and the length of main branch.

The saddle definition of bound particles however tends to result in longer main branch lengths
for small clumps with less than 100 particles. This might be explained by the fact that in
general, when saddle is applied, subhaloes which are at the bottom of the clump hierarchy will
tend to contain less bound particles compared to when no saddle is used, and have shorter
lifetimes because they are found to have merged into their hosts earlier. Therefore clumps with
more than 100 particles with the no saddle condition might be moved to the lower mass bin
of ≤ 100 particles when saddle is used, thus increasing the fraction of clumps with high main
branch lengths (lengths of 50-60), as well as the number of branches. Evidence of the earlier
merging can be seen in the overall higher number of branches in the right column of figure 10,
as well as the average values, total clump numbers and the median particle numbers in a clump
given in table 1.

The displacement statistic used to quantify misidentifications in figure 11 indicates that no
parameter choice results in a obviously “wronger” progenitor-descendant pairing. Even though
there are some ∆r > 1, indicating that there might be misidentifications present, it can’t be
determined easily whether they truly are. When the displacement statistic is calculated for
haloes and subhaloes separately, which is shown in appendix B, no halo descendant-progenitor
pair shows a displacement above 1, indicating no obvious misidentifications, yet a significant
fraction of subhalo progenitor-descendant pairs have a high displacement value ∆r > 1. However,
the displacement statistic is calculated assuming a uniform acceleration, which is not valid for
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subhaloes. On the other hand, the fact that any parameter pair used found at least some clumps
with more than 1000 particles at z = 0 with main branch length of unity, which is the case when
it doesn’t have any progenitor, and thus essentially “appearing out of nowhere”, is strongly
suggesting present misidentifications.

The logarithmic mass growth in figure 9 shows that as expected, the distribution is indeed
skewed towards βM > 0. When the inclusive parameter is used, the distribution of mass
growth contains a few more extreme mass growths and losses (βM → ±1), as well as some high
mass growth fluctuations (ξM → ±1) (see figure 9). When the no saddle parameter is used,
noticeably more extreme mass growth (βM → ±1) and mass growth fluctuations (ξM → ±1)
occur.

In conclusion, whether to use inclusive or exclusive mass definitions for subhaloes shows
very little effect on the merger trees. Based on the fewest extreme mass growth fluctuations,
the saddle parameter is clearly preferable.

3.3. Influence of the Number of Tracer Particles Used

nmb = 1 10 50 100 200 500 1000
average MBL group I 24.188 24.330 23.567 23.353 23.153 22.876 22.656
average MBL group II 50.399 50.116 49.472 49.122 48.835 48.777 48.762
average MBL group III 55.233 54.863 53.264 54.059 54.715 54.327 54.165
average MBL group IV 56.690 54.884 52.345 52.900 53.958 55.761 56.448
average NoB group I 1.228 1.305 1.296 1.305 1.327 1.357 1.367
average NoB group II 2.699 3.062 3.265 3.337 3.448 3.586 3.596
average NoB group III 6.625 7.229 8.051 8.206 8.670 8.914 9.121
average NoB group IV 20.407 25.237 27.288 28.554 29.457 30.443 31.420

Table 2: Average data for all clumps at z = 0 for varying numbers of clump tracer particles nmb. The groups I,
II, III and IV are defined as clumps that contain less then 100, 100-500, 500-1000 or more than 1000 particles,
respectively. “MBL” is an abbreviation for “main branch length”, “NoB” stands for “number of branches”.

nmb = 1 10 50 100 200 500 1000
trees pruned from tree catalogue 33924 23091 22146 22131 22130 22129 22129
highest particle number of a LIDIT 1369 236 236 236 236 157 157
median particle number of a LIDIT 19 20 20 20 20 20 20
LIDITs with >100 particles pruned 513 42 32 26 25 24 24
total number of jumpers 20176 20905 22074 22041 20970 19307 18249

Table 3: Trees pruned from the merger tree catalogue for varying numbers of clump tracer particles nmb

throughout all snapshots. “LIDIT” is an abbreviation of “last identifiable descendant in tree”. For LIDITs
no further descendants could be identified throughout the simulation and consequently their tree was pruned
from the merger tree catalogue. A “jumper” refers to a clump that has been merged into another clump at
some snapshot, but re-emerged at a later snapshot, like shown in figure 7.
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Figure 13: Logarithmic mass growth and mass growth fluctuation distributions for progenitor - descendant
pairs or three consecutive nodes in a branch, respectively, with masses above 5 ·1011M� throughout the entire
simulation for varying numbers of clump tracer particles nmb. The distribution is computed as a histogram
which is normalised by the total number of events found.

The average number of branches and average main branch lengths are shown in table 2. The
average number of branches increases with the number of tracers used, the case for nmb = 10
for clumps with less than 100 particles being the only exception. The average main branch
length decreases for the two lower mass clump bins (less than 500 particles). This can also be
seen in the top two rows of figure 14, where the length of the main branches and the number
of branches are plotted. This indicates that more mergers were detected. Counter-intuitively,
this can be seen as a sign that more reliable trees are created with increasing nmb. Recall that
progenitors from adjacent snapshots are given priority over non-adjacent “jumpers”. By tracking
more particles per clump, more candidates can be expected to be found, which is supported by
the fact that the number of jumpers in the simulations decreasing with increasing nmb (see table
3). Considering that also being a main progenitor to any descendant is given priority over being
merged into the main descendant of the progenitor, it should be safe to say that it should be
true merging events that have been misidentified by tracking fewer nmb particles.

When a clump has no descendant candidates at all, its tree is removed from the list of trees.
How many of these trees have been pruned throughout the simulation is shown in table 3, as
well as the particle number of the most massive pruned clump, the median particle number of
pruned clumps and the number of clumps containing more than 100 particles that have been
pruned. With increasing nmb, the number of pruned clumps, the highest particle number of a
pruned clump, and the number of clumps with more than 100 particles decreases. Notice that
for nmb = 1, there is a drastic increase in all these three quantities. In particular, clumps with
more than 1000 particles are pruned, meaning that haloes with mass above 1.5 · 1012M� simply
vanished between two snapshots. These statistics indicate furthermore that with increasing
number of tracing particles, more merging events are detected.

The displacements in figure 12 show virtually no differences. The only noticeable difference is
towards the high end of ∆r, where nmb = 1 and nmb = 10 have a small peak further out than
the other choices for nmb.

The logarithmic mass growth and mass growth fluctuations in figure 13 show that these distri-
butions mostly overlap, but extreme growths (βM → ±1) and fluctuations (ξM → ±1) decrease
with increasing nmb.

It seems that nmb = 100−200 is a good compromise between computational efficiency and good
results. Note that for this simulation, the median number of particles in z = 0 clumps was 83,
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Figure 14: Length of main branches, defined as the number of snapshots this clump appears in, and the
number of branches including the main branch of z = 0 clumps for varying numbers of clump tracer particles
nmb. Four distributions are shown, for four different ranges of numbers of particles at z = 0 exclusively
assigned to the clump: less then 100 (top), 100-500, 500-1000 and more than 1000 (bottom), where each
particle has mass mp = 1.55 · 109M�. The distribution is computed as a histogram which is normalised by
the total number of events found per particle count group.
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meaning that with nmb = 100, more than half of identified clumps were being tracked by every
particle they contain.

3.4. Outlook

Based on the previously shown results, the current implementation of the merger tree algorithm
seems to perform well. The shapes of the logarithmic mass growths and mass growth fluctuations
in figures 9 and 13 as well as the distributions of lengths of main branches and number of branches
are in good agreement with the results from other merger tree codes, which have been compared
in Avila et al. 2014. However, there are still some unanswered conceptual questions and possible
algorithm optimisations to be discussed.

On the conceptual side, when linking progenitors and descendants across multiple snapshots,
one must ask: How far in the future or in the past does one need to look for a descendant
or progenitor, respectively? At what point should one assume that the tracked progenitor is
really dissolved and definitely won’t reappear at later times? The current implementation only
contains the option to forget past merged progenitors after a user defined number of snapshots
has passed, but by default, it will track them until the simulation ends. By not removing
orphans at all and using them to link descendants with progenitors across multiple snapshots,
misassignments are enabled, leading to wrong formation histories.

Two possible solutions would be the following:

1. Estimate the time a clump would require to completely merge into its parent structure,
after which the progenitor shouldn’t be tracked anymore. This is for example done in
Moster, Naab, and White 2013, where they compute the dynamical friction time tdf of
a merged subhalo based on the orbital parameters found at the last snapshot where this
subhalo was identified:

tdf = αdf
Vvirr

2
sat

GMsat ln Λ (28)

where rsat is the distance between the centres of the main halo and of the subhalo, Msat

is the mass of the subhalo, ln Λ = (1 + Mvir/Msat) is the Coulomb logarithm, Mvir is
the virial mass of the main halo, Vvir is the circular velocity of the main halo at the virial
radius and αdf = 2.34. A smaller subhalo inside a main halo experiences dynamical friction
because of its gravitational attraction: At any given moment, it attracts the particles of
the host towards the point in space where it currently resides, but because the subhalo
itself is in orbit, it will move away from that point, thus leaving a slightly denser trail
along the path it moves. The gravitational attraction from this trail on the other hand
will eventually slow it down and cause it to fall into the main halo’s centre.
Another possibility would be to use the fitting formula for the merger timescale of galaxies
in cold dark matter models by Jiang et al. 2008.

2. The particle used to track a past merged progenitor is also the same particle that an orphan
galaxy is assigned to. In principle, it should be possible to define some galaxy merging
cross-sections such that the probability of a collision between an orphan galaxy and a non-
orphan galaxy which will result in a galaxy merger can be computed. Unknown parameters
of these cross-sections should be able to be calibrated using N-body simulations. After a
collision, one could remove the orphan from future snapshots.

From a technical viewpoint, one clear bottleneck in the current merger tree algorithm is the
requirement to write progenitor particles and data to file and read them back in and sort them
out at a later snapshot. An elegant solution would be to permanently store the clump IDs of
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particles in memory, however this would require an extra integer per particle in the simulation,
which becomes prohibitively expensive for large simulations not only because it would need a
lot of memory, but also because more data needs to be communicated between MPI tasks.

An option would be to track which particles left each task’s domain and which particles entered
between two snapshots. The clump IDs of particles would still be read and written to and from
files, but it would minimise the sorting part of the algorithm where each MPI task figures out
which tracker particles it contains. The necessary data of particles that left or entered new do-
mains between snapshots could then be communicated with one collective MPI communication,
provided they’ve been tracked in a clever manner.

Another option would be to change the amount of data each MPI task needs to read in. Cur-
rently, every MPI task reads in and writes to one shared file using MPI reading and writing
routines in order to maximally make use of the parallel architecture. Instead, each task could
write its own file. Meanwhile, between snapshots, the maximal velocity of any particle should
be traced. This way, once the simulation advances to the next snapshot, it would be possible
to estimate the maximal distance any particle could’ve travelled. Provided every MPI task has
knowledge on how the entire computational domain is split between tasks, it could skip reading
in data written by tasks where no particle currently in this task’s domain could have come from.
This would however probably require a more sophisticated communication for progenitor data
such as their mass or descendant candidates. (Currently, because every MPI task reads in all
the progenitor data, this communication are simple collective scatter and gather operations.)
Furthermore, the situation will get more complicated if the domain decomposition changes its
shape between snapshots to e.g. load balance.

4. Testing Mock Galaxy Catalogues

4.1. Methods

The primary quantity a mock galaxy catalogue must reproduce are stellar mass functions Φ(M∗),
which give the number density of central galaxies with stellar mass M∗. The stellar mass
functions obtained using the merger tree algorithm and the SMHM relation (15) are showed and
discussed in section 4.3

The second test of the mock galaxy catalogues is whether the galaxy clustering of the Universe
is reproduced. A commonly used measure of clustering is the two-point correlation function
(2PCF) ξ(r), which according to the cosmological principle should be isotropic and thus a
function of distance r as opposed to position r. The two-point correlation function can be
interpreted as the excess probability of finding a galaxy in a volume element at a separation r
from another galaxy, compared to what is expected for a uniform random distribution. It can be
computed via inverse Fourier transform of the power spectrum P (k) (Mo, Van den Bosch, and
White 2011), which itself can be obtained from the Fourier transform of the density contrast
field δ(r):

δk = 1
V

∫
eikrδ(r)d3r (29)

with

δ(r) = ρ(r)
〈ρ(r)〉 − 1 (30)
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Where ρ(r) is the galaxy density field and 〈ρ(r)〉 is the mean density, V = L3 is the volume of
a large box on which the density field is assumed periodic, and k = 2π

L (ix, iy, iz), where ix, iy, iz
are integers.

The power spectrum P (k) and the 2PCF ξ(r) are given by

P (k) = V 〈|δk|2〉 (31)

ξ(r) = 1
(2π)3

∫
e−ikrP (k)d3k (32)

= 1
2π2

∞∫
0

P (k)sin(kr)
kr

k2dk (33)

The simulation box is divided in a uniform grid of 10243 cells and the mass is distributed using
a cloud-in-cell interpolation scheme to obtain the density field. The Fourier transforms are
performed using the FFTW library (Frigo and Johnson 2005). Instead of first averaging the
tree-dimensional power spectrum P (k) to obtain a one-dimensional power spectrum P (k) and
then integrating it following eq. (33), first the three-dimensional correlation function ξ(r) is
computed by computing the inverse Fourier transform on the three-dimensional power spectrum
P (k) and then ξ(r) is averaged over all angular directions to obtain ξ(r). This has the advantage
of not having to perform an integral to infinity while only a finite sample is present.

Once the real space correlation function is known, the projected correlation function wp(rp) can
be derived by integrating ξ(r) along the line of sight (Moster et al. 2010):

wp(rp) = 2
∞∫
0

dr||ξ
(√

r2
|| + r2

p

)
= 2

∞∫
rp

dr rξ (r)√
r2 − r2

p

(34)

where the comoving distance r has been decomposed into components parallel (r||) and per-
pendicular (rp) along the line of sight. The integration is truncated at half the length of the
simulation box.

The obtained correlations are showed and discussed in section 4.4.

4.2. Dataset Used for Testing

Mock galaxy catalogues from two simulations were created, each containing 5123 ≈ 1.3 · 108

particles. They differ in the volume they simulate: G69 covers 69 comoving Mpc, while the
second simulation, G100, contains 100 comoving Mpc.

With different box sizes come different mass resolutions: The particle mass for G69 is mp =
9.59 · 107M�, for G100 it is mp = 3.09 · 108M�.

The cosmological parameters are taken from the 2015 Plack Collaboration results (Planck Col-
laboration et al. 2016): The Hubble constant H0 = 67.74 km s−1Mpc−1, density parameters
Ωm = 0.309, ΩΛ = 0.691, scalar spectral index ns = 0.967, and fluctuation amplitude σ8 = 0.816
were used. The initial conditions were created using the MUSIC code (Hahn and Abel 2011).

As before, the density threshold for clump finding was chosen to be 80ρc and the saddle threshold
for halos was set to 200ρc, where ρc = 3H2

8πG is the cosmological critical density. Only clumps
with at least 10 particles were kept.
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Table 4: Redshift interval of observed stellar mass functions that are used for comparison and the abbreviation
used in this work as reference.

redshift interval Reference Abbreviation
z ∼ 0− 1 Moustakas et al. 2013 MOU
z ∼ 0− 4 Pérez-González et al. 2008 PG
z ∼ 1− 3.5 Mortlock et al. 2011 MOR
z ∼ 1.3− 4.0 Marchesini et al. 2009 MAR
z ∼ 4, z ∼ 5 Lee et al. 2012 KSL
z ∼ 4− 6 Stark et al. 2009 ST
z ∼ 7, z ∼ 8 Bouwens et al. 2011 BOU

4.3. Stellar Mass Functions

The obtained stellar mass functions Φ(M∗) of central galaxies for the two simulations, G69 and
G100, compared to observed stellar mass functions are shown in figure 15. The abbreviations
used for observational data are listed in table 4. For clarity’s sake, only stellar mass functions
from snapshots at redshifts which are closest to the mean redshift of the observational data are
plotted. Averaging the stellar mass function over the redshift interval made very little difference
compared to choosing only one closest to the mean of the interval, which is why the average
stellar mass functions were omitted from the main body of this work. As an example, the plot
of both average and a single stellar mass functions for the G69 simulation are shown in appendix
C.

The G69 simulation gives better results at the low mass end at z ∼ 0, and starts to deviate
noticeably around M∗ ∼ 108M�. Using a crude estimate that the SMHM ratio M∗/Mh ∼
10−1 − 10−2, together with a lower mass threshold of 10mp ∼ 109M� for clumps, one can
see that M∗ ∼ 108M� should be the lower mass threshold for stellar mass that is accurately
resolved. Furthermore, the “shoulder” of the SMF around log10M ∼ 10 − 12 appears flatter.
This flattening seems to produce results closer to observations in most redshift intervals. Also,
at z ∼ 0, the high mass end of the SMF is underestimated. Because high mass central galaxies
are hosted by high mas haloes, the simulation volume just might be too small to accurately
represent the statistics of the high mass halo abundance. This is supported by the fact that the
G100 simulation gives slightly better results at the high mass end.

The results seem quite good and within the uncertainties of the observed data up until z ∼ 1.65,
where the deviations look like they’re often outside the error bars. It gets worse with increasing
redshift. However, seeing how in almost every case the G69 yields better results than G100, the
high redshift SMFs should improve with increased resolution.
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Figure 15: Obtained stellar mass functions Φ(M∗) of central galaxies for the two simulation datasets G69
and G100, described in 4.2 with boxsize of 69 and 100 Mpc, respectively, compared to observed stellar mass
function. The abbreviations used for observational data are listed in table 4.
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4.4. Correlation Functions

The obtained 2PCF ξ(r) and the projected correlation function wp(rp) at z ∼ 0 are shown in
figure 16 for both the G69 and G100 simulations, and they are compared to observational results
from Li and White 2009 and Zehavi et al. 2004.
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Figure 16: The obtained 2PCF ξ(r) and projected correlation function wp(rp) for the G69 (dashed lines) and
G100 (dotted lines) simulations, both including and excluding orphan galaxies, compared to best power law
fits of the 2PCF from Li and White 2009 and Zehavi et al. 2004 and the projected correlation function from
Li and White 2009 (solid lines).

In all cases, including orphan galaxies produced correlation functions closer to observations.
Campbell et al. 2018 also found that the inclusion of orphan galaxies for mass-based SHAM
models may improve the clustering statistics of mock galaxy catalogues, particularly so at small
scales. The 2PCF obtained from the G100 simulation even can reproduce the best power law fit
from observations quite well for about two orders of magnitude of r ∼ 0.2− 20 Mpc. Noticeably
for both simulations the correlation functions start with very similar values regardless of whether
orphan galaxies are included or not for small r. As the distance r increases, so does the difference
between the two cases, and starts decreasing around r ∼ 1 − 2 Mpc. After r ∼ 10 Mpc, the
difference becomes very small. This behaviour may be explained by considering that one would
expect orphan galaxies to tend to be located within host halos, not somewhere in a void all
by themselves, thus contributing to the correlations at small distances stronger than at large
distances.

Any case underestimates the projected correlation function, but as for the 2PCF, the G100
simulation with orphan galaxies included in the computation of the correlation comes closest.
Because wp is computed by numerically integrating the previously obtained ξ(r), part of the
reason why wp might be underestimated is the propagation of errors. w(rp) is computed by
integrating ξ(r) from r = rp to r → ∞, meaning that the underestimated ξ(r) at large scales
r & 20 Mpc is included in the integration for every rp. Another reason might be that while
technically the integration should be performed to infinity, it was truncated at half of the length
of a simulation box.

The G100 simulation gives better correlation functions, which might be due to the fact that a
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bigger volume was simulated. A volume of 69 Mpc might just be too small to properly represent
a homogeneous, isotropic chunk of the Universe.

5. Conclusion

An algorithm to identify dark matter halo merger trees, designed to work on the fly on parallel
computing systems with the adaptive mesh refinement code RAMSES, was presented. Clumps
of dark matter are tracked across snapshots through up to some user-defined number, nmb, of
particles they consist of. The best choice for nmb seems to be around 100-200, where the trade-off
between computational cost and performance appears optimal. Furthermore, the influence of
various definitions of substructure properties on the resulting merger tree were tested. Whether
substructures contain their respective substructures’ masses or not had negligible effect on the
merger trees. However defining particles of substructure to be gravitationally bound to that
substructure if and only if the particles can’t leave the spatial boundaries of that substructure
leads to much less extreme mass growths and extreme mass growth fluctuations of dark matter
clumps, suggesting that it should be the preferred definition for accurate merger trees.

In agreement with the bottoms-up hierarchical structure formation picture for dark matter
haloes, the merger trees of massive haloes at z = 0 were found to tend to have more branches
and their formation history can often be traced to very high redshifts. Even clumps on the lower
mass end were successfully tracked back to high redshifts.

With the known formation history of dark matter clumps, using a stellar-mass-halo-mass relation
(eqns. (19)-(23)) galaxies can be placed in a dark matter only simulation to obtain mock galaxy
catalogues. The galaxies are placed at the position of the most tightly bound particle of any
dark matter clump. Once a clump merges into another and dissolves beyond the possibility of
identification, its last assigned galaxy is kept track of. Such an “orphan” galaxy is used two
reasons. Firstly, just because a clump can’t be identified any more due to the environment it
currently resides in, it doesn’t mean that the galaxy that it hosted is also dissipated. On the
contrary: Nagai and Kravtsov 2005 showed that tidal stripping of galaxies inside a dark matter
halo sets in much later than for the subhalo they reside in. Secondly, it is possible for a subhalo
to re-emerge from its host halo at later snapshots because it wasn’t detected by the clump finder
in the density field of the host halo, but still existed. Such a situation is illustrated in figure 7.
In these cases, orphan galaxies are used to establish a link between progenitor and descendant
clumps across multiple snapshots.

However, the current implementation only contains the option to forget past merged progenitors
after a user defined number of snapshots has passed, but by default, it will track them until
the simulation ends. This might lead to misidentifications of progenitor-descendant pairs and
therefore wrong formation histories. Solutions for this problem would be either to remove the
orphans after the estimated time for them to merge into the parent structure has passed, which
could be e.g. the dynamical friction time (eq. (28)), or introduce some form of galaxy-galaxy
merging cross sections to compute the probability of a collision between galaxies that will result
in a galaxy merger.

From a technical viewpoint, one clear bottleneck in the current merger tree algorithm is the
requirement to write progenitor particles and data to file and read them back in and sort them
out at a later snapshot. A possible improvement would be to track which particles left each
task’s domain and which particles entered in between two snapshots. The progenitor particles
would still be read and written to and from files, but it would minimise the sorting part of the
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algorithm where each MPI task figures out which tracker particles it contains. Another option
would be to change the amount of data each MPI task needs to read in. The maximal velocity
of any particle in the time interval between two snapshots should be traced. This way, once
the simulation advances to the next snapshot, it would be possible to estimate the maximal
distance any particle could’ve travelled. Provided every MPI task has knowledge on how the
entire computational domain is split between tasks, it could skip reading in data written by
tasks where no particle currently in this task’s domain could have come from.

Given that the mock galaxy catalogues in this work were created using simulations with relatively
low spatial and mass resolution of 5123 particles in boxes of 69 and 100 comoving Mpc each,
the obtained correlation functions (shown in figure 16) and stellar mass functions (figure 15)
show good agreement with observed stellar mass functions. By comparing the results of the
two simulations it can be expected that a higher spatial resolution should improve the clustering
statistics, and together with a higher mass resolution the stellar mass functions of central galaxies
should also improve.
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Appendix A Detailed Description of the Merger Tree
algorithm

The merger tree code essentially consists of two steps:

1. Create trees using progenitor data that was previously written to file and descendant
data which is currently in memory. The clumps identified in the snapshot where the
simulation currently is are treated as descendants, while the clumps from past snapshots
are considered to be progenitors.

2. Prepare and write data of current clumps to file. This data will be the progenitor data in
the following snapshot.

Suppose the simulation is at the first snapshot that contains haloes. As there are no progenitors
available at this point, no trees can be made, so the code directly jumps to step 2:

• For every clump, identify up to nmb tracker particles with minimal energy across all pro-
cessing units. If a clump consists of less than nmb particles, then take the maximally
available number of particles.
• Write the tracker particles of all processing units into a single shared file. All processing
units will read this file back in at the following snapshot. If past merged progenitors exist,
also write these to (a different) shared file.
• Remove all clump finding data from memory and continue with the simulation.

At the next snapshot, the merger tree code will start once haloes have been identified. This
time, progenitors exist, so the code proceeds as follows:

• Every processing unit reads in the progenitor data from the shared file of the previous
snapshot.
• Process the progenitor data:

– Find which tracer particles are on each processing unit’s domain by checking the
particles’ global ID. Each processing unit needs to know which tracer particles are
currently on its domain.

– Find and communicate globally which processing unit is the “owner” of which pro-
genitor (and past merged progenitor): The owner of any progenitor is defined as the
processing unit which has the most strongly bound particle of that progenitor within
its domain. (Analogously as for the past merged progenitors, this particle is referred
to as the “galaxy particle” of this progenitor.)

– Each processing unit henceforth only keeps track of the tracer particles that are on
its domain. The rest are removed from memory.

• Find links between progenitors and descendants: Essentially find “which tracer particle
ended up where”:
– After halo finding the halo to which any particle belongs is known.
– After reading in progenitor data the progenitor halo to which any tracer particle

belonged is known.
– Each processing unit loops through all its local tracer particles. Using these two

informations (in which halo the particle was and in which halo the particle is now)
for every tracer particle, all descendant candidates for all progenitors are found and
stored in a sparse matrix, where the rows correspond to progenitors and the columns
are the descendants. The exact number of particle matches between a progenitor-
descendant candidate pair is kept. Example: let nmb = 200. For progenitor with
ID 1, a possible result would be to find 50 particles in descendant with ID 2, 120
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particles in descendant with ID 7, 10 particles in descendant 3 and 20 particles that
aren’t in a halo at the current snapshot.

– The owner of progenitors gather and sum up all the matches found this way for that
progenitor and then scatter them back to any processing unit that has at least one
particle of that progenitor on their domain. (These are exactly the processing units
that sent data to the owner of the progenitor in the first place.)

– After communications are done, create the transverse sparse matrix, where the rows
are descendants and the columns are progenitors. These matrices will be used to loop
through progenitor or descendant candidates.

• Make trees:
– Obtain an initial guess for the main progenitors of every descendant and for the main

descendant of every progenitor by finding the candidate that maximises the merit
function (14).

– Loop to establish matches:
A main progenitor-descendant pair is established when the main progenitor of a
descendant is the main descendant of said progenitor, or in pseudocode:
match = (main_prog(idesc)==iprog) && (main_desc(iprog) == idesc)

While there are still descendants without a match and still progenitor candidates left
for these descendants:
∗ Loop through all descendant candidates of progenitors without a match, unless
you find a match.
∗ For all descendants without a match: Switch to the next best progenitor candi-
date as current best guess.

The loop ends either when all descendants have a match, or if descendants run out
of candidates.
If a progenitor hasn’t found a match, assume it merged into its best descendant
candidate.

– Add merged progenitors to the list of past merged progenitors.
– If there are descendants that still have no main progenitor: Try finding a progenitor

from an older, non-consecutive snapshot. Past merged progenitors are tracked by one
particle, their “galaxy particle”. All particles of the descendant under investigation
are checked for being a galaxy particle of a past merged progenitor. The most strongly
bound galaxy particle will be considered the main progenitor of the descendant under
consideration. If a match is found, the past merged progenitor is removed from the
list of past merged progenitors.

– Descendants that still haven’t found a progenitor at this point are deemed to be newly
formed.

• The results are written to file, and the code goes on to the previously described step 2.

Appendix B Testing Parameters of the Merger Tree
Algorithm: Results Distinguishing Between
Haloes and Subhaloes

In this section, the results for the evaluations of the merger tree algorithm parameters, as
described in section 3.2 are given, including the distinction between subhaloes and haloes.

Displacement statistics (eq. 24) are shown in figure 17, logarithmic mass growths (eq. 26) and
mass growth fluctuations (eq. 27) are shown in figure 18 for the saddle/no saddle comparison
and in figure 19 for varying number of tracer particles nmb.
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Figure 17: Distribution of the displacements for progenitor - descendant pairs with masses above 5 · 1011M�
throughout the entire simulation for the halo catalogue influencing parameters: whether subhalo particles are
included (inclusive) or excluded (exclusive) in the clump mass of satellite haloes, and whether to consider
particles which might wander off into another clump as bound (no saddle) or not (saddle) are shown in the
left plot. The results for varying numbers of clump tracer particles, nmb, are shown in the right plot. Solid
lines are for haloes, dashed lines are for subhaloes. The distributions are computed as a histogram which is
normalised by the total number of events found.
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Figure 18: Logarithmic mass growth and mass growth fluctuation distributions for progenitor - descendant
pairs or three consecutive nodes in a branch, respectively, with masses above 5 ·1011M� throughout the entire
simulation for the halo catalogue influencing parameters: whether subhalo particles are included (inclusive)
or excluded (exclusive) in the clump mass of satellite haloes, and whether to consider particles which might
wander off into another clump as bound (no saddle) or not (saddle). The distribution is computed as a
histogram which is normalised by the total number of events found. The upper row contains the results for
haloes, the lower for subhaloes.
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Figure 19: Logarithmic mass growth and mass growth fluctuation distributions for progenitor - descendant
pairs or three consecutive nodes in a branch, respectively, with masses above 5 ·1011M� throughout the entire
simulation for varying numbers of clump tracer particles nmb. The upper row contains the results for haloes,
the lower for subhaloes.

Appendix C Stellar Mass Functions at Mean Redshift vs
Average Over Redshift Interval

Figure 20 shows the obtained stellar mass functions Φ(M∗) over redshift intervals of the G69
simulation for both the snapshot with redshift closest to the central redshift of the interval used
for observational data and the average SMF computed over all snapshots with redshift within
the redshift interval. The differences are negligible.
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Figure 20: Obtained stellar mass functions Φ(M∗) of central galaxies for the G69 simulation datasets described
in 4.2 both averaged over the redshift interval of the observational data and from a single snapshot closest to
the centre of the interval compared to observed stellar mass functions. The abbreviations used for observational
data are listed in table 4.
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