

The PLATO Mission

Heike Rauer, DLR, Germany Isabella Pagano, INAF, Italy Miguel Mas-Hesse, INTA, Spain

and the whole PLATO Team

The PLATO Mission

Goals and Methods

Prime mission goals:

- Detect a large number of extrasolar transiting planets, including Earth-sized planets up to the habitable zone of solar-like stars
- Determine precise planetary radii, masses, hence mean densities
- Investigate seismic activity in stars, enabling the precise characterisation of the planet host star, including its age

Characterisation of super-Earths around solar-like stars

Dots: Small planets with measured radius and mass. (less than twice the Earth and less than 10 Earth masses)

PLATO goals

- Search planets in the habitable zone of solarlike stars.
- Determine whether they are rocky planets.
- Determine their age.
- Help us understand how planets form and evolve.
- > Tell us whether there other systems like ours.
- Provide targets for further atmosphere studies.

Status today:

- 5202 planets in exoplanet.eu
- 1252 planets with m + r
- 170 with m<10 m_e and r<2 r_e
- 0 characterized in HZ of solar-like stars

PLATO is about Characterisation

Lam et al. 2021

See also HD 23472 system (Barros et al. 2022) for planets <1r_e

PLATO

- 3rd M-class ESA mission
- Launch Q4 2026 into orbit around L2 Earth-Sun Lagrangian point
- High precision photometry : $4 \le m_v \le 11$ (13)
- precision of 50 ppm in 1 hour for mv ≤ 11
- Multi-telescopes approach → 26 cameras

ESA/ATG medialab

Size of about 3.5 m \times 3.1 m \times 3.8 m (8.2 m solar array) Launch mass of 2165 kg, including consumables

The FoV is spread over:

~2 billion pixels (2 000 Mpx vs 98 Mpx for Kepler)

~6 600 cm² of sensitive area (2x Gaia)

PLATO: instrument

24 Normal cameras:

- 12cm aperture telescopes
- range: $\sim 4 \le m_V \le 16$
- Cameras in 4 groups, pointing separation by 9.2 deg
- FOV payload ~49°x 49° (2132 deg²)
- Each camera has 4 x CCD, each 4510×4510px
- Pixel scale 15 arsec/pixel
- read-out cadence: 25 sec
- operate in "white light"(500 1000 nm)

2 Fast cameras:

- range: ~4 ≤ m_V ≤ 8.2
- read-out cadence: 2.5 sec
- one "red" & one "blue" camera

Total FOV ~2132 deg² (vs 105 deg² Kepler)

ESA

PLATO: instrument

24 Normal cameras:

- 12cm aperture telescopes
- range: $\sim 4 \le m_V \le 16$
- Cameras in 4 groups, pointing separation by 9.2 deg
- FOV payload ~49°x 49° (2132 deg²)
- Each camera has 4 x CCD, each 4510×4510px
- Pixel scale 15 arsec/pixel
- read-out cadence: 25 sec
- operate in "white light" (500 1000 nm)

2 Fast cameras:

- range: ~4 ≤ m_V ≤ 8.2
- read-out cadence: 2.5 sec
- one "red" & one "blue" camera

Total FOV ~2132 deg² (vs 105 deg² Kepler)

mission comparison

Fig. 12 Comparison of noise levels expected for PLATO with other missions. The approximate parameter space for PLATO samples (green: P1, red: P5) is indicated for illustrative purposes.

Observing Strategie

Nominal Mission:

> 2 "long pointings" of 2 years each

Alternatives:

- ➤ 1 "long pointing (LP) " for 3 years
- ➤ 1 year "step-and-stare" of 2 months each or
- ➤ 1 LP for 4 years

possible mission extensions:

- > Full performance until 6,5 years
- > Consumables for 8 years mission duration

Observing Strategie

Nominal Mission:

2 "long pointings" of 2 years each

Alternatives:

- ➤ 1 "long pointing (LP) " for 3 years
- ➤ 1 year "step-and-stare" of 2 months each or
- ➤ 1 LP for 4 years

possible mission extensions:

- > Full performance until 6,5 years
- Consumables for 8 years mission duration

Stellar target samples:

Nominal Mission:

- ~15 000 stars <11mag
 precize planet radii (5%), astroseismology
 (ages 10%), RV-planet masses (10%)
- >245 000 stars <13 mag: planet radii <10%, RV- and TTV-Massen
- >5 000 M dwarfs

Nominal Mission:

2 "long pointings" of 2 years each

Alternatives:

- ➤ 1 "long pointing (LP) " for 3 years
- ➤ 1 year "step-and-stare" of 2 months each or
- > 1 LP for 4 years

possible mission extensions:

- > Full performance until 6,5 years
- Consumables for 8 years mission duration

Expected transit yields with 4 years mission scenarios:

Targets	Observing Strategy	
	2+2 years	3+1 years
V<11 mag, all planet types	1200 - 1350	2300 - 2700
V<13 mag, all planet types	4600 - 7150	10300 - 10800
V<11 mag, planets <2 r_earth, G0V host star	0 - 120	0 - 140

ESA-SCI(2017)1; Heller et al. 2021, Matuszewski et al. (subm.), Cabrera et al. (in prep.) see also Rauer et al., in prep.

PLATO Input Catalogue (PIC) Is build up continuously:

PIC1.1.0 is a catalog of F5->GKM dwarf and sub-giant stars selected accordingly with the criteria defined in the PLATO Science Requirement Document

PIC availability (as defined in PLATO SMP):

- A first version of the PIC with the targets in the first LOP sky field will be delivered by the PMC to the ESA Science Working Team 2 years before launch.
- Updates of the PIC are planned 9 months before launch and 6 months before the start of each LOP.
- Other fine tunings on the PIC are possible at any time during mission operations following the mission planning cycle
- Publication of the PIC (at the latest) 9 months before launch (for guest observer call).

O. I.I. IOMO OF WIL

Next: PICT.T.U contains 308245 sources

PLM STM: Environmental Campaign completed

IMAGE Credits: ESA/OHB GmbH

CAM STM Tested

IMAGE Credits: ESA/PMC

CAM EM Tested

IMAGE Credits: SRON/PMC

Payload DPS EM Bench integrated and under testing

IMAGE Credits: DLR/PMC

Flight CAM production started

PLATO Timeline

