

Radial Velocity requirements, benchmark and foreseen operation & coordination

F. Bouchy (Geneva) - WP142

7.11 PSM WP 142 000 DEV: Radial Velocity Follow-up

Radial Velocity Follow-up	PSM WP 142 000									
Classification: Needed for SGS development and operations	Development phase	07/2016 — 12/2026								
Leader: François Bouchy Institution: Geneva University (S										
Key Personnel: F. Bouchy; C. Moutou (LAM, France); S. Udry (Geneva); E. W. Guenther (TLS, Germany); D. Ségransan (Geneva); T. Forveille (IPAG, France); F. Pepe (Geneva)										
Objectives: Prepare and coordinate the activities of ground-based radial-velocity measurements of PLATO transit candidates to establish the nature of the transit events and to characterise the mass of the companion of the core science program from earth-like planets to brown-dwarfs.										
Tasks: 1) Identify and list all the existing and in-development PLATO mission (2024-2030) with a significant amoun efficient data reduction systems. Facilities will be rank as a function of the RV uncertainties effectively obtain 1h exposure. The uncertainty should include photon- 2) Prepare a list of benchmark observations to qualify	RV facilities that will be in or at of available time, competen ked not as function of the tele ned for a solar-type star of m noise and instrumental syste the participating facilities.	peration during the nt teams, and escope diameter but agnitude mv=11 in a matic error.								

 If existing and in-development facilities are estimated to be not sufficient, define the strategy to build new facilities or/and upgrade existing ones.

WP 142 100 - Radial Velocity Computation Tools (X. Dumusque)

Objectives:

Prepare and coordinate the activities of radial-velocity computations and global analysis tools to search for and characterise planetary systems

Tasks:

 Definition of requirements for the deliverables of RV facilities (spectral format, SNR, resolution, RV precision)

2)Requirements for optimally computing the RV from extracted spectra (best techniques (CCF, template matching, line-by-line, PWRV, etc.) depending on type of stars (v.sin(I_{star}), spectral type, binarity, etc.)

3)Tools to mitigate at best instrumental and stellar signals in RV data and requirements for those (activity indexes, GPs, SCALPEL, YARARA)

4)Re-reduction of archival RV data (HARPS + HARPN + ESPRESSO)

5)Definition of requirements to calibrate the RV offset between different RV instruments (observation of RV standards, evaluate the effect of different resolution on planetary signal and stellar signal characterisation, to which RV precision this can be done).

6) Define tools allowing the combination of data of different nature (astrometric, photometric, spectroscopic) to optimise RV follow-up observations.

→ Recent development in RV Extraction and analysis [Xavier Dumusque]

→ Modelling or mitigating stellar noise [Luca Malavolta]

WP 142 200 – Reconnaissance spectroscopy and radial velocity (E. Guenther / C. Moutou)

Objectives:

Prepare and coordinate the activities of the first radial velocity screening at low precision and the mass determination of hot-Jupiters and brown-dwarfs for PLATO with RV facilities like ES@TLS (2m), FIES@NOT (2.5m), HERMES@Mercator (1.2m), and CAFE@CalarAlto (2.2m)

Tasks:

1) Define an efficient screening strategy using low-precision RV measurements (10-30 m/s) in order to optimise the RV-follow-up observations.

2) Define the appropriate criteria to stop, or to continue RV-measurements.

3) Define and develop tools to estimate from these first low-precision RV-measurements to the expected RV-accuracy that will be obtained with instruments of higher precision in order to optimise the follow-up strategy.

 Define the optimum strategy in order to distinguish giant planets from brown dwarfs and binaries with the minimum number of RV-measurements.

→ Existing facilities + Recon spectroscopy [Eike Günther]

WP 142 300 - High-Precision RV Measurements (F. Pepe)

Objectives:

Prepare and coordinate the activities of high-precision radial-velocity measurements of PLATO candidates around quiet stars to measure the mass of Earth and super-Earth like planets with spectrographs like HARPS@ESO (3.6m), HARPS-N@TNG (3.6m), and ESPRESSO@ESO (8.2m)

Tasks:

 Define the best strategy of very high-precision RV follow-up (≤1 m/s) to measure the mass of Earth and super-Earths out to the habitable zone of quiet stars.

2) Define the appropriate criteria to stop, or to continue very high-precision RV-measurements.

3) Specify the needs for follow-up observations with very high precision

4) Assess the status, performance and availability of telescope and instruments

5) Define and develop tools to select most appropriate quiet stars with a transiting companion in the domain of telluric planet

→ Recent development in RV technics + new instruments [Francesco Pepe]

WP 142 400 – Near-Infrared Radial Velocity Measurements (T. Forveille) Objectives:

Prepare and coordinate the activities of ground-based radial-velocity measurements of PLATO transit candidates using infra-red spectrographs like SPIROU@CFHT (3.6m), CARMENES@CalarAlto (3.5m), CRIRES@ESO (8.2m), NAHUAL@GTC (10m), and GIANO@TNG (3.6m)

Tasks:

1) Establish which type of stars are best observed with IR spectrograph: M dwarfs (brighter in the IR), active stars (which systematic error are lower in the IR), etc.

2) Assess the status, performance and availability of telescope and instruments

 Define the best use and strategy of IR spectrograph for the RV follow-up screening and mass determination

WP 142 500 "RV reprocessing & Homogenization" L. Malavolta (TBC)
Identification of available archival data
Tests of re-processing on archival data
Homogenization of stellar activity index re-processing
Re-processed data access to PFU Data Base

Requirements for the RV facilities

- A maintained telescope and instrumentation over the mission duration,
- A significant number of available nights per years,
- High flexibility and reactivity in the scheduling
- An identified technical and scientific team in charge of the instrument, the operations and observations,
- A data reduction software providing in almost real time reduced data
- A demonstration of performances on real cases (e.g. Kepler, K2 or TESS)

TOI-561 e - Lacedelli et al. 2020

Orbital Phas

0.8

1.0

HD95338b - Diaz et al. 2020

V= 8.6 HARPS + PFS1/2 **P= 55.1 days** Rp= 3.89 Re K= 8.17 ± 0.40 m/s Mp = 42.4 ± 2.2 Me

K2-263b - Mortier et al. 2018

- → Small-planets at long period : A test case for PLATO, HIP 41378 [Alexandre Santerne]
- → Lessons learned from RV FU of long-period Kepler and TESS small-size candidates [Nolan Grieves]

Kepler-51b,c,d Masuda 2014 Hadden & Lithwick 2017

Masses from TTVs

Kepler-51c Kp= 14.7 **P= 85.3d** Mp= 3.9 ± 0.8 Me

Kepler-51d **P= 130.2d** Mp= 6.2 ± 1.6 Me

Kepler-87b,c Ofir et al. 2014 Masses from TTVs

Kepler-87c **P= 191d** Rp= 6.14 Re Mp= 6.4 ± 0.8 Me

→ Combining TTVs and RV for mass determination [Dan Fabrycky] Tau Ceti - Feng et al. 2017 Not transiting

V=3.5 HARPS (x9000) + HIRES@Keck

GJ514b - Damasso et al. 2022

Not transiting

V=9.0 HIRES x104 HARPS x162 CARMENES-VIS x274

P= 140.4 days K= 1.15 ± 0.20 m/s Msini= 5.2 ± 0.9 Me

Main providers of precise masses

Radial Velocity Facilities

Facilities will be ranked not as function of the telescope diameter but as a function of the RV uncertainties effectively obtained for a solar-type star of magnitude mv=11 in a 1h exposure. The uncertainty should include photon-noise and instrumental systematic error.

https://docs.google.com/spreadsheets/d/1MY3GmuZhfyTFuCUCYwgCIVQQ_bQD2IHKDZkFncHGZ24/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1MY3GmuZhfyTFuCUCYwgCIVQQ_bQD2IHKDZkFncHGZ24/edit#gid=0

Instrument name	Web page	Status (Existing / Project / In Dev)	Instrument PI	Starting Date of operation	Location (Observatory + Coordinates)	Telescope/Obs ervatory Director	Telescope Me Diameter (m) (ar	edian seeing ccsec)	Expected of nights for PLAT	i Nb /year O FU	Time Allocatio (TAC / G	on TO)	Local cont person (support astronome	tact er)	
SOPHIE	obs-hp.fr	Existing	I. Boisse	2006	OHP/+45°	A. Le Van Suu	2	:	2		TAC		I. Boisse		
TLS-Echelle (TC	tls-tautenburg.de	Existing	E.W.Guenther	1996	TLS/+51°	A.P. Hatzes/M. F	2	:	2	40	GTO		E.W.Guent	ther	
CAFE		Existing													
CARMENES		Existing													
ESPRESSO		Existing													
CORALIE		Existing													
FEROS															
SPIROU	spirou.irap.omp.	Existing	JF Donati	2018	MK/+20°	JG Cuby	3.6 0.6	5			TAC		L. Arnold		
NIRPS															
Neo-Narval		in dev	T. Boehm	2020	TDI /+ AE®	A long					TAC		Dh Mathia	<u> </u>	
SPIP		in dev	JF Donati			Photon-no	ISE								
CRIRES+ Existing		Instrument name	Demonstrate RV systemat limitation (m/s)	d on a V=11 ic star for 1h exposure (m/s)	G2 Spectral resolution	Spectra Domain	Fiber/S accept (nm) (arcse		er/Slit Re aptance in sec) de		ences for ıment ˈiption	References for RV FU	Reduction pipeline and Data products		
				SOPHIE			75000/40000	387-69	4		3				
			TLS-Echelle (T	C 46 m/s. 9.3 m	ag 60 m/s	650	00 462-73	4 (VIS)		1.2			Kabath+ 2021	Viper	
				CAFE											
\rightarrow Existing facilities			CARMENES												
		ESPRESSO													
		CORALIE													
			FEROS												
+ Recon spectroscopy [Eike Günther]			SPIROU			700	00 980-24	0		1.3	1.3 Donati+ 20		NRAS	APERO	
			, , , , , , , , , , , , , , , , , , , 	NIRPS											
				Neo-Narval											
			SPIP			700	00 980-24	50							
				CRIRES+											

List of the GOP products for RVs

Name	Description	Dimension	Туре	Unit	Name	Description	Dimension	Туре	Unit
VRAD	Radial velocity value	1D	DOUBLE	[m/s]	PLATO ID	PLATO ID of the target	0D	CHAR	
VRAD_INF	Radial velocity inferior uncertainty	1D	DOUBLE	[m/s]	STAR NAME	Star Name from a given catalogue. Valuable in case the target is a binary	OD	CHAR	
VRAD_SUP	Radial velocity superior uncertainty	1D	DOUBLE	[m/s]	PRODUCT_ID	ID of the PFU product	0D	UINT64	[-]
BJD	Barycentric Julian Time	1D	DOUBLE	[Julian date	INSTRUMENT	Spectrometer used to acquire the spectrum	0D	CHAR	[-]
BISS	CCF Bissector value	1D	FLOAT	[m/s]	RESOLUTION	Spectral resolution	0D	FLOAT	[-]
BISS_ERROR	CCF Bissector error	1D	FLOAT	[m/s]	REDUCTION_PIPELINE	Reduction pipeline used to issue the data (including version)	0D	CHAR	[-]
FWHM	CCF FWHM value	1D	FLOAT	[m/s]	UPLOAD DATE		0D	DOUBLE	Julian date
FWHM_ERROR	CCF FWHM error	1D	FLOAT	[m/s]	PROCESSING DATE		0D	DOUBLE	Julian date
CCF_CONTRAST	Contrast of the CCF	1D	FLOAT	[-]	FIBER_ACC	Fiber/Slit acceptance	0D D	OUBL	E[arcsec]
Log_RHK	Chromospheric index from Call H&K lines	1D	FLOAT	[-]					
Log_RHK_ERR	Chromospheric index from Call H&K lines	1D	FLOAT	[-]					
	error								
HALPHA_INDEX	Equivalent width of the Ha line	1D	FLOAT	[-]					
HALPHA_ERROR	Equivalent width of the H α line uncertainty	1D	FLOAT	[-]					
HELIUM_INDEX	Equivalent width of the He I $\lambda1083~\text{nm}$	1D	FLOAT	[-]					
HELIUM_INDEX_ERROR	Equivalent width of the He I $\lambda1083$ nm error	1D	FLOAT	[-]					
RM_FLAG	Flag whether the data were acquired during a transit	1D	INT	[-]					
BERV	Barycentric Earth RV	1D	FLOAT	[m/s]					
DRS_QC(*)	Data Reduction Quality Control	1D	INT	[-]					

(*) color correction, drift correction, saturation,

Benchmark of RV observations to qualify RV facilities

Most high-precision RV instruments already engaged on Kepler, K2 and TESS Follow-Up → Check published performances on mass characterization of transiting planets → Download/Access reduced data for End-to-End tests including Lg data

Foreseen organization / operations

- Lessons learned from TESS/TFOP → Sam Quinn
- Guided and coordinate approach → Ignasi Ribas
 Matching targets and adequate facilities + Minimize number of used facilities per targets
- Daily updated of PFU database with predefined deliverables and QC
- Telescope time-share to optimize visibility, sampling, and flexibility (like on 3.6m)
- Huge number of RV measurements is foreseen Main precise mass providers must be heavily engaged Maintain and guarantee long-term performances of existing facilities contribution to operation costs ?
- Precise masses may come from combination of RVs + TTVs \rightarrow Dan Fabrycky

Radial Velocity instruments, requirements and operations

- 1. RV instrument requirements, Benchmark and foreseen operation & coordination [François Bouchy]
- 2. Recent development in RV technics + new instruments [Francesco Pepe]
- 3. Existing facilities + Recon spectroscopy [Eike Günther]
- 4. Combining TTVs and RV for mass determination [Dan Fabrycky]

Radial velocity extraction & analysis

- 1. Small-planets at long period : A test case for PLATO, HIP 41378 [Alexandre Santerne]
- Lessons learned from RV FU of long-period Kepler and TESS small-size candidates [Nolan Grieves]
- 3. Recent development in RV Extraction and analysis [Xavier Dumusque]
- 4. Modelling or mitigating stellar noise [Luca Malavolta]

European RV facilities in operation

European RV facilities in development or *in project*

Main south spectrograph facilities involved in TESS FU

Non-European RV facilities in operation

PFS2@Magelan (6.5m) HRS@SALT (11m) CHIRON@CTIO (2.5m) HIRES@Keck (10m) APF@Lick (2.5m) Veloce@AAT (3.9m) ISHELL@IRTF (3m) PARVI@Palomar (5.1m) HPF@HET (10m) IRD@Subaru (8m) EXPRES@HappyJack (4.3m)

Non-European RV facilities in development or *in project*

MAROON-X@Gemini-N (8m) NIED@KittPeak (3.5m) KPF@Keck (19m) iLocater@LBT (2x8m) GCLEF@GMT (25m)