WP 142 200

Medium accuracy RV- measurements and reconnaissance spectroscopy and

The work package structure

WP 142 200 - Recon spectroscopy and medium precision RV-measurements (> 3m/s)

1.) Define screening strategy for medium precision RV.

2.) Define criteria :

 \rightarrow continue medium-precision RV-measurements.

- \rightarrow move to high-precision RV follow-up.
- \rightarrow stop observations.

3.) Develop tools to estimate expected number RV-measurements needed for different instruments.

4.) Strategy to distinguish giant planets from brown dwarfs, and binaries with the minimum number of RV measurements.

5.) Assess the status, performance and availability of telescopes and instruments for the above-mentioned objectives.

https://docs.google.com/spreadsheets/d/1MY3GmuZhfyTFuCUCYwgCIVQ Q_bQD2IHKDZkFncHGZ24/edit?usp=sharing

1	Instrument name	Web page	Status (Existing / Project / In Dev)	Instrument Pi	Starting Date of operation	Location (Observatory + Coordinates)	Telescope/Obs ervatory Director	Telescope Diameter (m)	Median seeing (arcsec)	Expected Nb of nights/year for PLATO FU	f Time Allocation (TAC / GTO)	Local contact person (support astronomer)	Demonstrated RV systematic limitation (m/s)	Photon-noise uncertainties on a V=11 G2 star for 1h exposure (m/s)	Spectral resolution	Spectral Domain (nm)	Fiber/Slit acceptance (arcsec)	References for instrument description	References for RV FU	Reduction pipeline and Data products	
2	HARPS		Existing																		
3	HARPS-North		Existing																		
4	HIRES		Existing																		
5	APF		Existing																		
6	SALT/HRS		Existing																		
7	FIES		Existing																		
8	SOPHIE	obs-hp.fr	Existing	I. Boisse	2006	OHP/+45*	A. Le Van Suu	2	2	2	TAC	I. Boisse			75000/40000	387-694		3			
9	TLS-Echelle (TC	tis-tautenburg.de	Existing	E.W.Guenther	1996	TLS/+51°	A.P. Hatzes/M. F	۲ 2	2	40	GTO	E.W.Guenther	46 m/s, 9.3 mag	. 60 m/s	65000	462-734 (VIS)	1.3	2	Kabath+ 2021	Viper	
10	CAFE		Existing																		
11	CARMENES		Existing																		
12	ESPRESSO		Existing																		
13	CORALIE		Existing																		
14	FEROS		Existing																		
15	SPIROLI	spirou iran omn	Evisting	IE Donati	2018	MK/+20°	IG Cuby	3.6	0.65		TAC	1 Arnold			7000	980-2450	1	Donati+ 2020 M	NRAS	APERO	
16	NIPPS	apirou.iiup.omp.	e Existing	or bonad	2010	14110 1 20	JO OUDY	5.6	0.00		ino	L. Anou			1000	000-2400	1.	- Donau - 2020 mi	1010	A LINO	
17	Nec-Nanyal		in day	T Roohm	2020	TPI /+45°	ALODOT	2			TAC	Ph Mathian									
18	CDID		in dev	IE Donati	2020	TBL/+45	A. Lopez	2	•		TAC	P Fouqué			7000	080.2460					
10	CDIDER+		Eviating	JF Donau	2023	1BL/145	A. LOPEZ	2			IAC	P. Fouque			70000	300-2400					
20	ANDER		Existing																		
20	THE (HADDE 3)		Project																		
21	THE (HARPS-3)																				
22	PFSZ																				
23	CHIRON		E 1.0.																		
24	Veloce		Existing																		
25	ISHELL		Existing																		
26	PARVI																				
27	HPF		Existing																		
28	IRD		Existing																		
29	EXPRES		Existing																		
30	MAROON-X		Existing																		
31	NIED		Existing																		
32	KPF		Existing																		
33	iLocater																				
34	GCLEF																				
35	MINERVA																				
36	PARAS-2																				
37	TOU																				
38	MINERVA-R																				
39	GIARPS		Existing																		
40	PLATOspec	https://stelweb.a	s in dev	P. Kabaith	2023	LS/-29		1.5	i 0.9	200	GTO	P. Kabath			68000	360-680					
41	OES		existing	Kabath				2	2 2	40	GTO	Kabath	70)	40000	380-900					
42	MaHPS/FOCES	https://www.usm	Existing	H. Kellermann		Wd/+48		2	0.9		GTO	1	3.5	5	70000	380-870					
43												-									

Why do we want to take medium accuracy RVmeasurements?

How much observing time would we needed if all stars with low massplanets were to be observed with ESPRESSO?

Red, blue and magenta curves indicate exposure times of 3600 s, 1200 s and 60 s, respectively.

PLATO: 1200 planets of all types orbiting star brighter than 11 mag.

We would need 1200s +120s (overheads) per target. 1200 targets x 6 spectra \rightarrow 110 nights.

 \rightarrow Impossible

You need to know the activity level of a star before you take 100 RV-measurements, with HARPS/ESPRESSO!

100 RV-measurements allow to detect a 4 (2) M_{Earth} planet in HZ of G-star, or 2 (1) M_{Earth} of K-star if the star has R'_{HK} <-5.0 (5,1).

32 (8)% of the G-stars have R[']_{HK}<-5.0 (5,1).

Why reconnaissance spectroscopy and medium accuracy RV-measurements?

- \rightarrow No "contamination" by giants thanks to Gaia.
- \rightarrow Gaia data also allows to exclude most BEBs (Panahi et al. 2022).
- \rightarrow MOS-spectroscopy to determine the stellar parameters.
- \rightarrow Very active stars identified in the LC-analysis.

Aim 1.) Find out if there are additional objects in the system like gas-giants (12% of the systems with a terrestrial planet, Jeanne Davoult, Lankwitz Sep 2022), brown dwarfs, or companion stars (SB-fraction 15.6%±1.5%; Latham ea.2002).
Aim 2.) Determine activity level using CalIHK lines.

Aim 3.) Obtain high-resolution (high S/N) spectra to refine Teff, log(g), [Fe/H], and vsini.

- \rightarrow How many RV-measurements are needed with which instrument?
- → J.D: about 60% of the terrane planets are in systems containing several low-mass planets, only 5% of the terrane planets are single.

Example for system with a planet of Mp=9.66 M_{Jup}, and P=2091d, and a planet with Mp=4.5 M_{Earth}, and P=6.2d. (pi Men)

Orbital phase

Example: Combining the RV-measurements of several instruments:

First observations with FIES \rightarrow HARPS \rightarrow ESPRESSO

A first estimate what is required:

- \rightarrow Let us assume that we have 1200 targets.
- \rightarrow Let us assume that the targets have typically 11 mag.
- \rightarrow Let us assume that we take at least three spectra and the combined spectrum should have a S/N>100. For 10% of the stars we need > 30 RVs.
- → 2m-class telescopes (e.g. Café):1200x3x2500s + 120x30x2500s
 total if only 2m-class telescopes are used: 600+ nights!
- \rightarrow 4m class telescopes (e.g. HARPS): 1200x3x900s + 120x30x2500s.
- total if only 4m-class telescopes are used: 200 nights!
- Please fill in:
- <u>https://docs.google.com/spreadsheets/d/1MY3GmuZhfyTFuCUCYwgCIVQQ_bQD2IHKDZkFncHGZ24/edit?usp=sharing</u>

A first estimate what is required:

- \rightarrow Let us assume that we have 1200 targets.
- \rightarrow Let us assume that the targets have typically 11 mag.
- \rightarrow Let us assume that we take at least three spectra and the combined spectrum should have a S/N>100. For 10% of the stars we need > 30 RVs.
- → 2m-class telescopes (e.g. Café):1200x3x2500s + 120x30x2500s
 total if only 2m-class telescopes are used: 600+ nights!
- \rightarrow 4m class telescopes (e.g. HARPS): 1200x3x900s + 120x30x2500s.
- total if only 4m-class telescopes are used: 200 nights!
- Please fill in:
- <u>https://docs.google.com/spreadsheets/d/1MY3GmuZhfyTFuCUCYwgCIVQQ_bQD2IHKDZkFncHGZ24/edit?usp=sharing</u>

The PLATO fields

We need lots of telescopes in both hemispheres!

Comparison with previous surveys

- CoRoT: 33 planets with mass from RVs and radius.
- Kepler: 297 planets with mass from RVs and radius (incl. upper limits).
- K2: 102 planets with mass from RVs and radius.
- TESS: 212 planets with mass from RV and radius.

 \rightarrow Total 664 transiting planets where the mass has been determined by RV-measurements (12.10.2022) so far!

Thank you

