WP 142200

Medium accuracy RV- measurements and reconnaissance spectroscopy and

The work package structure

WP 142200 - Recon spectroscopy and medium precision RV-measurements (> 3m/s)

1.) Define screening strategy for medium precision RV.
2.) Define criteria :
\rightarrow continue medium-precision RV-measurements.
\rightarrow move to high-precision RV follow-up.
\rightarrow stop observations.
3.) Develop tools to estimate expected number RV-measurements needed for different instruments.
4.) Strategy to distinguish giant planets from brown dwarfs, and binaries with the minimum number of RV measurements.
5.) Assess the status, performance and availability of telescopes and instruments for the above-mentioned objectives.
https://docs.google.com/spreadsheets/d/1MY3GmuZhfyTFuCUCYwgCIVQ Q_bQD2IHKDZkFncHGZ24/edit?usp=sharing

Why do we want to take medium accuracy RVmeasurements?

How much observing time would we needed if all stars with low massplanets were to be observed with ESPRESSO?

Red, blue and magenta curves indicate exposure times of $3600 \mathrm{~s}, 1200 \mathrm{~s}$ and $\mathbf{6 0 ~ s , ~ r e s p e c t i v e l y . ~}$

PLATO: 1200 planets of all types orbiting star brighter than 11 mag.

We would need 1200s +120s (overheads) per target. 1200 targets x 6 spectra $\rightarrow 110$ nights.
\rightarrow Impossible

You need to know the activity level of a star before you take 100 RV-measurements, with HARPS/ESPRESSO!

Why reconnaissance spectroscopy and medium accuracy RV-measurements?

\rightarrow No "contamination" by giants thanks to Gaia.
\rightarrow Gaia data also allows to exclude most BEBs (Panahi et al. 2022).
\rightarrow MOS-spectroscopy to determine the stellar parameters.
\rightarrow Very active stars identified in the LC-analysis.

Aim 1.) Find out if there are additional objects in the system like gas-giants (12\% of the systems with a terrestrial planet, Jeanne Davoult, Lankwitz Sep 2022), brown dwarfs, or companion stars (SB-fraction 15.6\% $\pm 1.5 \%$; Latham ea.2002) .
Aim 2.) Determine activity level using CallHK lines.
Aim 3.) Obtain high-resolution (high S / N) spectra to refine Teff, log(g), $[\mathrm{Fe} / \mathrm{H}]$, and vsini.
\rightarrow How many RV-measurements are needed with which instrument?
\rightarrow J.D: about 60% of the terrane planets are in systems containing several low-mass planets, only 5% of the terrane planets are single.

Example for system with a planet of $\mathrm{Mp}=9.66 \mathrm{M}_{\mathrm{Jup}}$, and $P=2091 \mathrm{~d}$, and a planet with $M p=4.5 \mathrm{M}_{\text {Earth }}$, and $\mathrm{P}=6.2 \mathrm{~d}$.

 (pi Men)

Example: Combining the RV-measurements of several instruments:
First observations with FIES \rightarrow HARPS \rightarrow ESPRESSO

A first estimate what is required:

- \rightarrow Let us assume that we have 1200 targets.
- \rightarrow Let us assume that the targets have typically 11 mag.
- \rightarrow Let us assume that we take at least three spectra and the combined spectrum should have a $\mathrm{S} / \mathrm{N}>100$. For 10% of the stars we need >30 RVs.
- $\rightarrow 2 \mathrm{~m}$-class telescopes (e.g. Café): $1200 \times 3 \times 2500 \mathrm{~s}+120 \times 30 \times 2500 \mathrm{~s}$ total if only 2 m -class telescopes are used: 600+ nights!
- $\rightarrow 4 \mathrm{~m}$ class telescopes (e.g. HARPS): $1200 \times 3 \times 900 \mathrm{~s}+120 \times 30 \times 2500 \mathrm{~s}$.
- total if only 4 m -class telescopes are used: 200 nights!
- Please fill in:
- https://docs.google.com/spreadsheets/d/1MY3GmuZhfyTFuCUCYwgCIVQQ bQD2IHKDZkFncHGZ24/edit?usp=sharing

A first estimate what is required:

- \rightarrow Let us assume that we have 1200 targets.
- \rightarrow Let us assume that the targets have typically 11 mag.
- \rightarrow Let us assume that we take at least three spectra and the combined spectrum should have a $\mathrm{S} / \mathrm{N}>100$. For 10% of the stars we need >30 RVs.
- $\rightarrow 2 \mathrm{~m}$-class telescopes (e.g. Café): $1200 \times 3 \times 2500 \mathrm{~s}+120 \times 30 \times 2500 \mathrm{~s}$ total if only 2 m -class telescopes are used: 600+ nights!
- $\rightarrow 4 \mathrm{~m}$ class telescopes (e.g. HARPS): $1200 \times 3 \times 900 \mathrm{~s}+120 \times 30 \times 2500 \mathrm{~s}$.
- total if only 4 m -class telescopes are used: 200 nights!
- Please fill in:
- https://docs.google.com/spreadsheets/d/1MY3GmuZhfyTFuCUCYwgCIVQQ bQD2IHKDZkFncHGZ24/edit?usp=sharing

The PLATO fields

Comparison with previous surveys

- CoRoT: 33 planets with mass from RVs and radius.
- Kepler: 297 planets with mass from RVs and radius (incl. upper limits).
- K2: 102 planets with mass from RVs and radius.
- TESS: 212 planets with mass from RV and radius.
\rightarrow Total 664 transiting planets where the mass has been determined by RVmeasurements (12.10.2022) so far!

Thank you

