RV - T.TV Complementary
for transit-survey
follow-up

Daniel Fabrycky
University of Chicago

Extremely Differing Detection Limits

 RV - Radial Velocity; TTV - Transit Timing Variations

Figure 8. Upper mass limits for a hypothetical perturber as a function of perturber period normalized to the period of GJ 1214b, P_{c} / P_{b}.

Usually, either RV or TTV will dominate the dynamical mass detection \& mass constraint.

RV vs. TTV strength

- As the transit campaign lengthens, TTVs win.
- If targets are brighter, RVs win.
- Kepler: TTV was dominant; RV special cases.
- TESS: RV is dominant; TTV special cases.
- Plato: "just right"! Both need robust programs.

Basic facts:	- Planet number - Masses	Transits	Radial Velocities
		w/ TTV	
		w/ TTV	
	- Periods (\& ratios)		
Dynamical	- Eccentricities	w/ TTV	
properties:	- Mutual Inclinations	w/ TDV	

> Science Goals:
> Mass-Radius measurements (Composition)
> Planet Discovery / Full Architectures
> Resonant dynamics -> Migration Constraints

TTV's Achilles Heel: mass/eccentricity degeneracy

- Detection != Mass Determination
- Mass determination can come from "chopping" $\sim\left(m_{p}{ }^{1}, e^{0}\right)$

Kepler-9

- Near-2:1 giant planets
- TTV determined m_{b} / m_{c}
- Originally RV roughly measured $\left(m_{b}+m_{c}\right) / m_{*}$ (Holman+2010)
- Eventually TTV "chopping" \& harmonics determined $\mathrm{m}_{\mathrm{c}} / \mathrm{m}_{*}$ (Deck\&Agol 2015)
- RV confirms: Borsato+2019

Truly resonant planets don't have this degeneracy, but long $P_{\text {TTV }}$ (Nesvorný\&Vokrouhlický 2016)

Lots of possible perturber orbits for TTV detection of Kepler-19c (Ballard+2011)

RV solved it! $P_{2} / P_{1}=3.08 \pm 0.03$ (Malavolta+2017)
\quad Possible orbits:
Mean motion resonances:
$<2: 3$
$>2: 3$
$<2: 1$
Higher-order resonances:
$<1: 3$
$<5: 3$
$<3: 1$
$>4: 1$
Co-orbital planet?
Distant retrograde
satellite? $\quad 1: 1$

Getting more basic for the HZ: Follow-up Near the Survey Length

- Plato will find mono- and 2- transit candidates. \rightarrow Science of the habitable zone.
- Kepler's 1-4 transit candidates shown to the right, after the 1460 day survey. Need to confirm transit periods near the survey length!
- Can do by RV (but multiplanets will confuse us)
- Can do with Photometry (likely poorer precision)

Fabrycky+2013 arXiv:1309.1177

Example: TOI-5696 2 planets, 2 telescopes

TESS S46

TOI-5696.01

2-transit example over a data gap

1637.27days

Gap >> likely period.
Gap could be 27, 26, 25, 24... 1 periods long.
Short transit duration argues for >~20.
RV can distinguish between aliases. Highly constrained to discrete periods and known transit phase.

See, e.g. Osborne et al. 2022

RV/TTV Complementary Summary

- For individual systems, one of them wins.
- For a long-stare survey of bright targets, both follow-up capabilities are important!
- TTV often detects a perturber, without measuring its mass
- Determining actual periods is a more basic task, which will be very important for Plato's HZ science goal!

Bibliography

Ballard, Fabrycky, Fressin et al. 2011, The Kepler-19 System: A Transiting 2.2 R \oplus Planet and a Second Planet Detected via Transit Timing Variations, ApJ, 743, 200

Borsato, Malavolta, Piotto et al. 2019, HARPS-N radial velocities confirm the low densities of the Kepler-9 planets, MNRAS, 484, 3233

Carter, Winn, Holman et al. 2011, The Transit Light Curve Project. XIII. Sixteen Transits of the Super-Earth GJ 1214b, ApJ, 730, 82

Deck \& Agol 2015, Measurement of Planet Masses with Transit Timing Variations Due to Synodic "Chopping" Effects, ApJ, 802, 116

Fabrycky, Ford, Payne, et al. 2013, A Habitable Zone Census via Transit Timing and the Imperative for Continuing to Observe the Kepler Field, arXiv:1309.1177

Holman, Fabrycky, Ragozzine et al. 2010, Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations, Science, 330, 51

Malavolta, Borsato, Granata et al. 2017, The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations, AJ, 153, 224

Mayor, Marmier, Lovis et al. 2011, The HARPS search for southern extra-solar planets: XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets, arxiv:1109.2497

Nesvorný \& Vokrouhlický 2016, Dynamics and Transit Variations of Resonant Exoplanets, ApJ, 823, 72
Osborne, Bonfanti, Gandolfi et al. 2022, Uncovering the true periods of the young sub-Neptunes orbiting TOI-2076, A\&A, 664, 156

Chopping Signal Deck \& Agol 2015

$$
\psi_{j}=j \psi=j\left(\lambda_{1}-\lambda_{2}\right)
$$

Depends on angular offset

$$
\delta t_{2}=\frac{P_{2}}{2 \pi} \frac{m_{1}}{M_{\star}} \sum_{j=1}^{\infty} f_{2}^{(j)}(\alpha) \sin \psi_{j}
$$

Outer Planet

Resonant spikes, but varies by <~10x between
$1.2<\mathrm{P}_{2} / \mathrm{P}_{1}<2$
(where most interacting planets lie)

$$
\delta t_{1}=\frac{P_{1}}{2 \pi} \frac{m_{2}}{M_{\star}} \sum_{j=1}^{\infty} f_{1}^{(j)}(\alpha) \sin \psi_{j}
$$

Dynamics: Orbital Timescales

Dynamics: Secular Timescales

$$
P_{2} / P_{1}=2.44
$$

The Numerical Model

Newton's equations, using high-order Runge-Kutta. Determine RV at observation times and transit t (mid-time), and b, v (for shapes).
Or, just model the photometry point-by-point ("photodynamics")

Example of Gaps for TTV

- K2 revisited its own fields. TTV analysis of K2146 (Hamann et al. 2019):

Monotools

- Osborne et al. 2022
model transit lightcurves in cases of multiple transits, duotransits, and monotransits, as well as multiple systems with combinations of such candidates, with both radial velocities and transit photometry.
https://github.com/hposborn/MonoTools

Fig. 1. Marginalised $\log _{10}$ probabilities for each of TOI-2076 c (upper) and TOI-2076 d (lower) period aliases, as computed by MonoTools before CHEOPS observations.

