



# Quick overview of interface WP12-GOP

Systematic limitations of estimates from high-resolution spectra

(and how to hopefully mitigate them for PLATO...)

#### **BRIEF OVERVIEW OF INTERFACE WP12-GOP**

Full details available in: IRD document on CONFLUENCE

# **REQUEST 1: GROUND-BASED SPECTROSCOPIC DATA**

#### What for?

Compute the classical stellar parameters (e.g. Teff, abundances) with WP122 pipeline (SAPP aka MSteSci1/MSAP2)

# What exactly?

Optical spectra for P1-P2-P5 + near-IR spectra for P4 (optical spectra may still be useful, but must be flux calibrated).

Repeated observations useful, but not requested.

#### TO BE DISCUSSED BY MARIA

#### **BRIEF OVERVIEW OF INTERFACE WP12-GOP**

Full details available in: IRD document on CONFLUENCE

# **REQUEST 2: INTERFEROMETRIC DATA**

#### What for?

Compute nearly model-independent radius + Teff with WP122 pipeline (SAPP).

Can also constrain limb darkening in some cases.

Used as benchmarks.

# What exactly?

A preparatory interferometric survey of a representative sample of F5-K7 dwarfs-subgiants + FU observations of PLATO targets of particular interest.

TO BE DISCUSSED BY DENIS

#### **BRIEF OVERVIEW OF INTERFACE WP12-GOP**

Full details available in: IRD document on CONFLUENCE

# **REQUEST 3: CHROMOSPHERIC ACTIVITY INDICES**

#### What for?

Apply activity-age relationships in WP123 pipeline (MSAP4)

# What exactly?

 $logR'_{HK}/S$  index from Ca II H+K + activity index from H $\alpha$ . Range of variations if repeated observations (not requested).

TO BE DISCUSSED BY NUCCIO





















Possible solution is to take a (much) more precise/accurate surface gravity from an external source.

Approach adopted, for instance, to characterise through spectroscopy ARIEL planet-host targets (Magrini+22) or to build SWEET-Cat catalogue (Sousa+21):

logg fixed to value from Gaia parallaxes + stellar models.

# Approach adopted for PLATO:

- For FGK stars: prior on logg determined from analysis of light curve
   Can be either from seismic or granulation properties;
- For M dwarfs: logg taken from stellar models.



Gent+22



Gent+22





#### **CONCERN #2: non-LTE AND 3D EFFECTS**



#### **CONCERN #2: non-LTE AND 3D EFFECTS**

Upgrade of radiative transfer code TURBOSPECTRUM to simultaneously account for non-LTE effects for 13 elements + ability to ingest average 3D atmosphere models (<3D>)





$$T_{\rm eff} = \left(\frac{4f_{\rm bol}}{\sigma\theta^2}\right)^{1/4}$$





Tayar+22



# Angular diameters: expected performance of forthcoming CHARA-SPICA interferometer (assuming limb darkening is known a priori)

| Dwarfs   | Challouf |      |      | Salsi-1 |       |       | Salsi-2 |       |        |
|----------|----------|------|------|---------|-------|-------|---------|-------|--------|
| SpTy     | 0        | ВО   | A0   | F5      | G7    | K4    | M0      | M3    | M4     |
| V // V-K | -2       | -1   | 0    | 1       | 2     | 3     | 4       | 5     | 6      |
| 0        | 0,10     | 1,00 | 3,35 | 6,28    | 11,82 | 22,25 | 39,94   | 70,70 | 125,14 |
| 1        | 0,06     | 0,63 | 2,11 | 3,96    | 7,46  | 14,04 | 25,20   | 44,61 | 78,96  |
| 2        | 0,04     | 0,40 | 1,33 | 2,50    | 4,71  | 8,86  | 15,90   | 28,14 | 49,82  |
| 3        | 0,02     | 0,25 | 0,84 | 1,58    | 2,97  | 5,59  | 10,03   | 17,76 | 31,43  |
| 4        | 0,02     | 0,16 | 0,53 | 0,99    | 1,87  | 3,53  | 6,33    | 11,20 | 19,83  |
| 5        | 0,01     | 0,10 | 0,33 | 0,63    | 1,18  | 2,23  | 3,99    | 7,07  | 12,51  |
| 6        | 0,01     | 0,06 | 0,21 | 0,40    | 0,75  | 1,40  | 2,52    | 4,46  | 7,90   |
| 7        | 0,00     | 0,04 | 0,13 | 0,25    | 0,47  | 0,89  | 1,59    | 2,81  | 4,98   |
| 8        | 0,00     | 0,03 | 0,08 | 0,16    | 0,30  | 0,56  | 1,00    | 1,78  | 3,14   |
| 9        | 0,00     | 0,02 | 0,05 | 0,10    | 0,19  | 0,35  | 0,63    | 1,12  | 1,98   |
| 10       | 0,00     | 0,01 | 0,03 | 0,06    | 0,12  | 0,22  | 0,40    | 0,71  | 1,25   |

Precision,  $\sigma R < 1\%$ 

**Current limits** 

Out of reach

# Take-away messages

- Three broad categories of data requested to GOP by WP12: see IRD document for details;
- Reliability of classical parameters (e.g. [Fe/H]) does have an effect on quality of PLATO DP5: M, R, and age;
- Prior on logg used by W12 pipeline for determination of classical parameters
  - For FGK stars: from seismic or granulation properties
  - > For M dwarfs: from stellar models;
- Efforts to improve spectroscopic modelling: non-LTE and 3D effects, etc.
- Benchmarking of results essential through nearly model-independent techniques (interferometry, analysis of eclipsing binaries, ...);
- Accuracy of classical parameters much more important than precision for seismic inferences (Cunha+21)
- While *accuracy* of Teff may be investigated, ONLY *precision* can be for [Fe/H] and the chemical abundances in general;
- Essential to carry out a *homogeneous* analysis for both single and candidate host stars to meaningfully study occurrence rate and properties of planetary systems as a function of [Fe/H], stellar mass, etc.

# EXTRA SLIDES ABOUT DIFFERENTIAL ANALYSES

#### **CONCERN #2: non-LTE AND 3D EFFECTS**

Line-by-line differential analysis of solar analogues/twins wrt Sun is largely immune to such effects (and others like reliability of atomic data): precise and robust



#### **CONCERN #2: non-LTE AND 3D EFFECTS**

Line-by-line differential analysis of solar analogues/twins wrt Sun is largely immune to such effects (and others like reliability of atomic data): precise and robust

